Get Smart! at :

*More than 150,000 articles for
DUMMIES

*Learn how almost everything
works

*Get Smart! Get Pedial



http://www.getpedia.com/

Finite Difference Methods
for Differential Equations

Randall J. LeVeque

DRAFT VERSION for use in the courses
AMath 585-6
University of Washington
Winter /Spring Quarters, 1998

WARNING: These notes are incomplete and may contain errors.
They are made available primarily for students in my courses.

Please contact me for other uses.
rjl@amath.washington.edu

©R. J. LeVeque, 1998






‘ ©R. J. LeVeque, 1998 — University of Washington — AMath 585—6 Notes

Contents

I Basic Text

1 Finite difference approximations

1.1
1.2
1.3
14
1.5

Truncation errors . . . . . . . . Lo e e e e e e
Deriving finite difference approximations . . . . . . . . .. ..o oL,
Polynomial interpolation . . . . . . . .. ..o
Second order derivatives . . . . ... L L
Higher order derivatives . . . . . . . . . . . . e

2 Boundary Value Problems

21
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15

2.16

2.17

The heat equation . . . . . . . . . . L
Boundary conditions . . . . . ..o
The steady-state problem . . . . . . . . .. L e e e e
A simple finite difference method . . . . . . . . . ... ... L oo
Local truncation error . . . . . . . . .. e
Global error . . . . . . oL e e
Stability . . . . . . .
Consistency . . . . . . . . e
Convergence . . . . . . . ... e e
Stability in the 2-morm . . . . . . .. L
Neumann boundary conditions . . . . . . . . . . ... L e
Green’s functions and max-norm stability . . . . . .. .. oL oo oL
Existence and uniqueness . . . . . . ..o e e e e e e
A general linear second order equation . . . . . ... Lo oL oL oo
Nonlinear Equations . . . . . . . . . . 0 @ o e e e e
2.15.1 Discretization of the nonlinear BVP . . . . . . ... ... ..o 0.
2.15.2 Nonconvergence . . . . . . . . . . . ..o
2.15.3 Nonuniqueness . . . . . . . . o ittt e e e e e
2154 ACCUTACY . -« v v v e
Singular perturbations and boundary layers . . . . .. ... oL oo oL,
2.16.1 Interior layers . . . . . . . . . . L
Nonuniform grids and adaptive refinement . . . . . .. ... oo oo oL

3 Elliptic Equations

3.1
3.2
3.3

34
3.5

Steady-state heat conduction . . . . . . . . .. .. ...
The five-point stencil for the Laplacian . . . . . . . . ... .. ... ... ... ...
Solving the linear system . . . . . . . . .. L
3.3.1 Gaussian elimination . . . . . . ... L
3.3.2 Fast Poisson solvers . . . . . . . . . .. L
3.3.3 Tterative methods . . . . . . . . . . ...
Accuracy and stability . . . . . . . .. e
The nine-point Laplacian . . . . . . . . . . . . e e

N O ot

10
10
11
12
13
14
14
15
15
17
19
22
23
25
26
28
28
29
30
33
33



ii CONTENTS
4 Function Space Methods 47
4.1 Collocation . . . . . . . . e e 47
4.2 Spectral methods . . . . . . . L e 48
4.2.1 DMatrix interpretation . . . . .. ..o L Lo 50

4.2.2 ACCUTaCY . . . v o i i e e e 50

4.2.3 Stability . . . . .o 51

4.2.4 Collocation property . . . . . . . . . . 51

4.3 The finite element method . . . . . . . . . ..o L 51
4.3.1 Two space dimensions . . . . . . . . . . . .. Lo 54

5 Iterative Methods for Sparse Linear Systems 57
5.1 Matrix splitting methods . . . . . . .. oo oo 57
5.1.1 Rate of convergence . . . . . .. ... e 59

5.1.2 SOR . . . e 61

5.2 Conjugate gradient methods . . . . . . . .. ... o o 62
5.2.1 Preconditioners . . . . . . . ..o 62

5.3 Multigrid methods . . . . . . . ..o 62

6 The Initial Value Problem for ODE’s 63
6.1 Lipschitz continuity . . . . . . . . . .. e 64
6.1.1 Existence and uniqueness of solutions . . . .. ... ... o0 oL, 65

6.1.2 Systems of equations . . . . . . ... 66

6.1.3 Significance of the Lipschitz constant . . . . . .. .. ... .. ... ... . .... 66

6.1.4 Limitations . . . . . . . . . L e e 67

6.2 Some basic numerical methods . . . .. . ..o Lo Lo 68
6.3 Truncation errors . . . . . . . .. ..ol e e e 69
6.4 Omne-step errors . . . . . . . . ... e e e 69
6.5 Linear Multistep Methods . . . . . . . . . . . . . .. ..o 70
6.5.1 Local truncation error . . . . . . . .. L. 71

6.5.2 Characteristic polynomials . . . . . .. . ... L oL Lo oo 72

6.5.3 Starting values . . . . . ... 72

6.6 Taylor series methods . . . . . . . . . . . L 73
6.7 Runge-Kutta Methods . . . . . . . . . . . . 74

7 Zero-Stability and Convergence for Initial Value Problems 77
7.1 COnVErZeNCe . . . . . . v i ittt e e e e e 77
7.2 Linear equations and Duhamel’s principle . . . . . . . .. ... oo 0oL 78
7.3 Omne-step methods . . . . . . . . . . L 78
7.3.1 Euler’s method on linear problems . . . . . . . . .. .. ... ... 78

7.3.2 Relation to stability for BVP’s . . . . . . ... oo oo 80

7.3.3 Euler’s method on nonlinear problems . . . . . . .. ... .. ... ... ... 81

7.3.4 Realistic error estimates . . . . . . . . . .. L. 82

7.3.5 General 1-step methods . . . . . .. . . . .. . ... ... 83

7.4 Zero-stability of linear multistep methods . . . . . . . . ... ... 83
7.4.1 Solving linear difference equations . . . . . . . . .. ..o oL 84

8 Absolute Stability for ODESs 89
8.1 Unstable computations with a zero-stable method . . . . . . . . ... ... ... ... .. 89
8.2 Absolute stability . . . . . . ... 91
8.3 Stability regions for LMMs . . . . . . . ... 91
8.4 The Boundary Locus Method . . . . . . . . .. . .. ... 96
8.5 Systems of equations . . . . . . . ... 98

8.5.1 Chemical Kinetics . . . . . . . . . . . o e e 98



R. J. LeVeque — AMath 585-6 Notes iii
8.5.2 Linear systems . . . . . . . . .o e e e e 99

8.5.3 Nonlinear systems . . . . . . . . . . L e 100

8.6 Choice of stepsize . . . . . . . . . . 101

9 Linear Multistep Methods as 1-step Methods 103
9.1 Absolute stability . . . . . . .. 104
9.2 Convergence and zero-stability . . . . . .. ... oo L 0oL 104

10 Stiff ODEs 107
10.1 Numerical Difficulties . . . . . .. . 0 0 107
10.2 Characterizations of stiffness . . . . . . . ..o oL oL L 109
10.3 Numerical methods for stiff problems . . . . . . . .. .. ... 0oL 110
10.3.1 A-stability . . . . . . . L 110

10.3.2 L-stability . . . . . . 0 e 110

10.4 BDF Methods . . . . . . . . . L o e 112

11 Some basic PDEs 115
11.1 Classification of differential equations . . . . . . . .. .. .. . o 0oL 115
11.1.1 Second-order equations . . . . . . . . . . ..o 115

11.1.2 Elliptic equations . . . . . . . . . . . . . L 115

11.1.3 Parabolic equations . . . . . . . .. ... L L 116

11.1.4 Hyperbolic equations . . . . . . . . . . .. .. L 116

11.2 Derivation of PDEs from conservation principles . . . . . . ... .. ... .. .. .... 117
11.3 Advection . . . . . . . L e 117
114 Diffusion . . . . . . o oL e e e e e 119
11.5 Source terms . . . . . . L e e e e e e e e 119
11.5.1 Reaction-diffusion equations . . . . . . . . .. ..o oL 120

12 Fourier Analysis of Linear PDEs 121
12.1 Fourier transforms . . . . . . . . .. 121
12.2 Solution of differential equations . . . . . . . ... oL oL L 121
12.3 The heat equation . . . . . . . . .. .. L 123
12.4 DISpersive Waves . . . .« . v it e e e e e e e e e e e e e e 123
12.5 Even vs. odd order derivatives . . . . . . . . . ..o 124

13 Diffusion Equations 125
13.1 Local truncation errors and order of accuracy . . . . . . .. ... ... L. 127
13.2 Method of Lines discretizations . . . . . . . . .. .. L o e 127
13.3 Stability theory . . . . . . . L 129
13.4 Stiffness of the heat equation . . . . . . . . .. ... oL 129
13.5 Convergence . . . . . . . oL e e e 130
13.5.1 PDE vs. ODE stability theory . . . .. .. ... . .. ... ... 132

13.6 von Neumann analysis . . . . . . . . .. .. L L 133
13.7 Multi-dimensional problems . . . . . . . . ..o oL 137
13.8 The LOD method . . . . . . . . . . . . . e 138
13.8.1 Boundary conditions . . . . . . . .. ..o e 138

13.8.2 Accuracy and stability . . . . .. .. oL o o 139

13.8.3 The ADImethod . . . . . . . . . . . . . 140



iv

CONTENTS

14 Advection Equations

14.1 MOL discretization . . . . . . . . .. Lo
14.1.1 Forward Euler time discretization. . . . . . . .. ... .. ...
14.1.2 Leapfrog . . . . . . o oo i
14.1.3 Lax-Friedrichs . . . . . ... .. .. ... ... .. ... ..

14.2 The Lax-Wendroff method . . . . . . . . . . ... .. .. ... .....
14.2.1 Stability analysis . . . . . .. ... o oo

14.3 Upwind methods . . . . . . . . .. ... ... .
14.3.1 Stability analysis . . . . . .. ... . oo Lo
14.3.2 The Beam-Warming method . . .. ... ... ... ... ...

14.4 Characteristic tracing . . . . . . . . .. L L oo

15 The CFL Condition

16 Modified Equations — Numerical Diffusion and Dispersion

16.1 Upwind . . . . . . . .. oL
16.2 Lax-Wendroff . . . . . . . ...
16.3 Beam-Warming . . . . . . . . . . L

17 Hyperbolic Systems and High-Resolution Methods

17.1 Scalar equations . . . . . . .. . L
17.1.1 The linear advection equation . . . . . . . . . . . .. ... ...
17.1.2 Burgers’ equation . . . . . . . .. ... oo
17.1.3 Shock formation . . . . .. ... ... ...
17.1.4 Weak solutions . . . . . . . . .. .. ... ..
17.1.5 The Riemann problem . . . . . . .. .. ... .. ... .....
17.1.6 Shock speed . . . . . . . .. ..o

17.2 Linear hyperbolic systems . . . . . . .. .. ... ... ... ..
17.2.1 Characteristic variables . . . . . . . .. .. ... ... ... ..
17.2.2 The Riemann Problem . . . . .. .. ... ... ... ......
17.2.3 The phase plane . . . . ... .. .. ... ... ... ... ..

17.3 Finite volume methods . . . . . ... .. .. ... .. 0.

17.4 Importance of conservation form — incorrect shock speeds . . . . . . .

17.5 Numerical flux functions . . . . . . . . . .. ... ... ... ... ..

17.6 Godunov’s method . . . . . .. .. ... L oL o
17.6.1 Godunov’s method on scalar equations . . . . . . ... .. ...

17.7 High-resolution methods . . . . . . ... .. ... ... ........
17.7.1 Reconstruct—Solve-Average . . . . . ... ... ... .. ....
17.7.2 Piecewise linear reconstruction . . . . . . ... ... ... ...
17.7.3 Choice of slopes . . . . . . . .. .. ...
17.7.4 Oscillations . . . . . . . . . . ...
17.7.5 Total variation . . . . . . . . .. ...
17.7.6 Slope-limiter methods . . . . . ... ... .. .. ... .....
17.7.7 Flux formulation with piecewise linears . . . . ... ... ...
17.7.8 Flux limiters . . . . . . ... .. .. o
17.79 TVD limiters . . . . . . . . . .. . o
17.7.10Linear systems . . . . . . . . .. ... L oo
17.7.11Implementation and CLAWPACK . .. ... ... ... ...

17.8 Boundary conditions . . . . . . .. ... Lo
17.8.1 Periodic boundary conditions . . . . .. . ... ...
17.8.2 Outflow boundaries . . . . . .. .. ... .. .. ... .....



R. J. LeVeque — AMath 585—-6 Notes v

18 Mixed Equations and Fractional Step Methods 187
18.1 Advection-reaction equations . . . . . . ... Lo oo e e 187
18.1.1 Umsplit methods . . . . . . . . . . . . L 187

18.1.2 Fractional step methods . . . . . . . . . ..o 189

18.2 General formulation of fractional step methods . . . . . ... ... ... ... .. .... 191
18.3 Strang splitting . . . . . . . . . . 193

II Appendices A-1
A1Measuring Errors A-1

A1.1 Errors in a scalar value
A1.1.1 Absolute error
A1.1.2 Relative error

A-1
A-1
A-2
A1.2 “Big-oh” and “little-oh” notation A-2
Al3 Errorsin vectors . . . . . . .. L A-3
A1.3.1 Norm equivalence . . . . . . . . . .. ..o A4
A-5

A-5

A6

A-7

A1.3.2 Matrix norms
A1.4 Errors in functions
A1.5 Errors in grid functions

A1.5.1 Norm equivalence

A2Estimating errors in numerical solutions A9
A2.1 Estimates from the true solution . . . . . . ... . L L oo A-10
A2.2 Estimates from a fine-grid solution . . . . . .. . ... o oo A-10
A2.3 Estimates from coarser solutions . . . . . . . .. ... A-11
A2.4 Extrapolation methods . . . . . . . . .. L A-12

A3Convergence of iterative methods A-13

A4Some Matrix Properties A-17
A4.1 Adjoints and symmetry . . . . ..o oL o e e e e e e A-17
A4.2 Positive definiteness . . . . . . . ..o A-19
A4.3 The maximum principle . . . . . . . . . oL A-20
A4.4 Diagonal dominance . . . . . . .. . Lo e A-20

A4.5 Quadratic forms . . . L L A-21



vi

CONTENTS




‘ ©R. J. LeVeque, 1998 — University of Washington — AMath 585—6 Notes

Part 1

Basic Text






‘ ©R. J. LeVeque, 1998 — University of Washington — AMath 585—6 Notes

Chapter 1

Finite difference approximations

Our goal is to approximate solutions to differential equations, i.e., to find a function (or some discrete
approximation to this function) which satisfies a given relationship between various of its derivatives
on some given region of space and/or time, along with some boundary conditions along the edges of
this domain. In general this is a difficult problem. A finite difference method proceeds by replacing the
derivatives in the differential equations by finite difference approximations, which gives a large algebraic
system of equations to be solved in place of the differential equation.

Before tackling this problem, we first consider the more basic question of how we can approximate
the derivatives of a known function by finite difference formulas based only on values of the function
itself at discrete points. Besides providing a basis for the later development, of finite difference methods
for solving differential equations, this allows us to investigate several key concepts such as the order of
accuracy of an approximation in the simplest possible setting.

Let u(x) represent a function of one variable that, unless otherwise stated, will always be assumed
to be smooth, meaning that we can differentiate the function several times and each derivative is a
well-defined bounded function over an interval containing a particular point of interest z.

Suppose we want to approximate u'(Z) by a finite difference approximation based only on values of
u at a finite number of points near Z. One obvious choice would be to use

u(Z + h) — u(z)

Diu(z) = b

(1.1)
for some small value of h. This is motivated by the standard definition of the derivative as the limiting
value of this expression as h — 0. Note that Du(z) is the slope of the tangent line interpolating u at
the points  and Z + h (see Figure 1.1).
The expression (1.1) is a one-sided approximation to u' since u is evaluated only at values of x > Z.
Another one-sided approximation would be
D_u(z) = (1.2)
Each of these formulas gives a first order accurate approximation to u'(Z), meaning that the size of the

error is roughly proportional to h itself.
Another possibility is to use the centered approzimation

u(Z + h) —u(Z — h)
2h

Dou(z) = - %(DJru(a’c) + D_u(z)). (1.3)

This is the slope of the tangent line interpolating u at Z — h and Z + h, and is simply the average of the
two one-sided approximations defined above. From Figure 1.1 it should be clear that we would expect

Dyu(T) to give a better approximation than either of the one-sided approximations. In fact this gives a

3



4 Finite difference approximations

Z+h

Z-h T

Figure 1.1: Various approximations to u'(Z) interpreted as the slope of secant lines.

Table 1.1: Errors in various finite difference approximations to u'(z).

h D+ D- DO D3
1.0000e-01 -4.2939e-02 4.1138e-02 -9.0005e-04 6.8207e-05
5.0000e-02 -2.1257e-02 2.0807e-02 -2.2510e-04 8.6491e-06
2.5000e-02 -1.0574e-02 1.0462e-02 -5.6280e-05 1.0885e-06
1.2500e-02 -5.2732e-03 5.2451e-03 -1.4070e-05 1.3651e-07

second order accurate approximation — the error is proportional to h? and hence is much smaller than
the error in a first order approximation when A is small.

Other approximations are also possible, for example
[2u(z + h) + 3u(z) — 6u(x — h) + u(z — 2h)]. (1.4)
It may not be clear where this came from or why it should approximate u’ at all, but in fact it turns
out to be a third order accurate approximation — the error is proportional to h3.

Our first goal is to develop systematic ways to derive such formulas and to analyze their accuracy
and relative worth. First we will look at a typical example of how the errors in these formulas compare.

Example 1.1. Let u(z) = sin(z) and Z = 1, so we are trying to approximate u'(1) = cos(1) =
0.5403023. Table 1.1 shows the error Du(z) — u'(Z) for various values of h for each of the formulas
above.

We see that Dy and D_u behave similarly though one exhibits an error that is roughly the negative
of the other. This is reasonable from Figure 1.1 and explains why Dgu, the average of the two, has an
error that is much smaller than either.

We see that
Dou(z) ~ —0.42h
Dou(z) ~ —0.09h>
Dsu(z) =~ 0.007h3

confirming that these methods are first order, second order, and third order, respectively.
Figure 1.2 shows these errors plotted against h on a log-log scale. This is a good way to plot errors
when we expect them to behave like some power of h, since if the error E(h) behaves like

E(h) ~ Ch?
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1003

Figure 1.2: The errors in Du(Z) plotted against h on a log-log scale.

then
log E(h) ~ log C + plog h.

So on a log-log scale the error behaves linearly with a slope that is equal to p, the order of accuracy.

1.1 Truncation errors

The standard approach to analyzing the error in a finite difference approximation is to expand each of
the function values of u in a Taylor series about the point Z, e.g.,

wZ@+h) = u(@)+h'(T)+ = h2 (@) + = h3 "(z) + O(h*) (1.5a)
w@—h) = u(z)—hu'(z)+§h2u”( z) — é_iﬁ "(z) + O(h?) (1.5b)

These expansions are valid provided that w is sufficiently smooth. Readers unfamiliar with the “big-oh”
notation O(h*) are advised to read Appendix A1 at this point since this notation will be heavily used
and a proper understanding of its use is critical.

Using (1.5a) allows us to compute that

Dyu(@) = WU _ iz 4 Sha @)+ Sh (@) + OR)
Recall that Z is a fixed point so that v"(z), u"'(Z), etc., are fixed constants independent of h. They
depend on u of course, but the function is also fixed as we vary h.

For h sufficiently small, the error will be dominated by the first term %hu” (Z) and all the other
terms will be negligible compared to this term so we expect the error to behave roughly like a constant
times h, where the constant has the value 2u "(z).

Note that in Example 1.1, where u(x) = sinz, we have $u”(1) = —0.4207355 which agrees with the
behavior seen in Table 1.1.

Similarly, from (1.5b) we can compute that the error in D_u(Z) is

D_u(z) — () _——h "(z )+ L p2y "(z) + O(h®)

which also agrees with our expectations.
Combining (1.5a) and (1.5b) shows that

uw(Z + h) —u(Z — h) = 2hu'(Z) + 3h3 u" () + O(h°)
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so that
Dou(z) —u'(z) = éhzu”’(i) + O(h4). (1.6)

This confirms the second order accuracy of this approximation and again agrees with what is seen in
Table 1.1, since in the context of Example 1.1 we have

1 1
éum(f) — _Ecos(l) = —0.09005038.

Note that all of the odd order terms drop out of the Taylor series expansion (1.6) for Dou(Z). This is
typical with centered approximations and typically leads to a higher order approximation.
In order to analyze Dsu we need to also expand u(Z — 2h) as

1 . 1
u(z — 2h) = u(z) — 2hu' () + 5(2h)2u"(i) - 6(2h)3u’”(55) + O(h%). (1.7)
Combining this with (1.5a) and (1.5b) shows that

Dyu(#) = /() + 5 h*u™ (2) + O*). (18)

1.2 Deriving finite difference approximations

Suppose we want to derive a finite difference approximation to u'(Z) based on some given set of points.
We can use Taylor series to derive an appropriate formula, using the method of undetermined coefficients.

Example 1.2. Suppose we want a one-sided approximation to u'(Z) based on u(Z), u(Z — h) and
u(Z — 2h), of the form

Dyu(Z) = au(Z) + bu(z — h) + cu(Z — 2h). (1.9)

We can determine the coefficients a, b, and ¢ to give the best possible accuracy by expanding in Taylor
series and collecting terms. Using (1.5b) and (1.7) in (1.9) gives

1 .
Dyu(z) = (a+b+c)u(@) — (b+ 2c)hu'(z) + §(b + 4c)h*u" ()

1

6

If this is going to agree with u'(Z) to high order then we need

(b+ 8c)h*u"' (Z) + - .

at+b+c = 0
b+2c = -1/h (1.10)
b+4c = 0

We might like to require that higher order coefficients be zero as well, but since there are only three
unknowns a, b, and ¢ we cannot in general hope to satisfy more than three such conditions. Solving
the linear system (1.10) gives

a=3/2h b=-2/h c=1/2h
so that the formula is
Dou() = %[311(3:‘) — 4u(@ — h) + u(z — 2h)]. (1.11)
The error in this approximation is clearly

Dau(®) — /() = —é(b+8c)h3u’”(j)+...

= %hw’(a—;) +OR).
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1.3 Polynomial interpolation

There are other ways to derive the same approximations. One way is to approximate the function
u(z) by some polynomial p(z) and then use p'(Z) as an approximation to u'(z). If we determine the
polynomial by interpolating w at an appropriate set of points, then we obtain the same finite difference
methods as above.

Example 1.3. To derive the method of Example 1.2 in this way, let p(z) be the quadratic polynomial
that interpolates u at Z, T — h and Z — 2h and then compute p’(Z). The result is exactly (1.11).

1.4 Second order derivatives

Approximations to the second derivative u” (z) can be obtained in an analogous manner. The standard
second order centered approximation is given by

D*u(z)

%[u@ — h) — 2u(Z) + u(@ + )]
— @)+ 3h" (@) + O(h)

Again, since this is a symmetric centered approximation all of the odd order terms drop out. This
approximation can also be obtained by the method of undetermined coefficients, or alternatively by
computing the second derivative of the quadratic polynomial interpolating u(z) at £ — h, Z and Z + h.

Another way to derive approximations to higher order derivatives is by repeatedly applying first
order differences. Just as the second derivative is the derivative of u’, we can view D?u(z) as being a
difference of first differences. In fact,

D*u(z) = Dy D_u(z)

since
Dy(D_u(z) = 7D u(@+h)~ D u(@)
_ % [(u(m-l—h})t—u(x)) 3 <u(x) —Z(i - h))]
= D%u(z).

Alternatively, D?(z) = D_ D u(Z) or we can also view it as a centered difference of centered differences,
if we use a step size h/2 in each centered approximation to the first derivative. If we define

Dou(z) = —(u(z + h/2) — u(z — h/2))

S

then we find that

1.5 Higher order derivatives

Finite difference approximations to higher order derivatives can also be obtained using any of the
approaches outlined above. Repeatedly differencing approximations to lower order derivatives is a
particularly simple way.
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Example 1.4. As an example, here are two different approximations to u”'(z). The first one is
uncentered and first order accurate:

. 1
D, D*u(z) = ﬁ(u(i +2h) — 3u(Z + h) + 3u(Z) — u(Z — h))
1 .
= u"(z)+ Ehu””(i) + O(h?).
The next approximation is centered and second order accurate:

1
DyD. D u(z) = %(u(i +2h) —2u(Z + h) + 2u(T — h) — u(Z — 2h))
1
= u"(z)+ ZhQu””’(:E) + O(h*).
Finite difference approximations of the sort derived above are the basic building blocks of finite
difference methods for solving differential equations.
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Chapter 2

Boundary Value Problems

We will first consider ordinary differential equations that are posed on some interval a < =z < b,
together with some boundary conditions at each end of the interval. In the next chapter we will
extend this to more than one space dimension, and study elliptic partial differential equations that
are posed in some region of the plane or three-dimensional space, and are solved subject to some
boundary conditions specifying the solution and/or its derivatives around the boundary of the region.
The problems considered in these two chapters are generally steady state problems in which the solution
varies only with the spatial coordinates but not with time. (But see Section 2.15 for a case where [a, b]
is a time interval rather than an interval in space.)

Steady-state problems are generally associated with some time-dependent problem that describes the
dynamic behavior, and the 2-point boundary value problem or elliptic equation results from considering
the special case where the soluiton is steady in time, and hence the time-derivative terms are equal to
zero, simplifying the equations.

2.1 The heat equation

As a specific example, consider the flow of heat in a rod made out of some heat-conducting material,
subject to some external heat source along its length and some boundary conditions at each end. If
we assume that the material properties, the initial temperature distribution, and the source vary only
with z, the distance along the length, and not across any cross-section, then we expect the temperature
distribution at any time to vary only with z and we can model this with a differential equation in one
space dimension. Since the solution might vary with time, we let u(x,t) denote the temperature at
point z at time ¢, where a < z < b along some finite length of the rod. The solution is then governed
by the heat equation

ue(z,t) = (k(2)ug(z,t))e + Y (2,t) (2.1)

where k(z) is the coefficient of heat conduction, which may vary with z, and ¢ (x,t) is the heat source
(or sink, if ¢» < 0). More generally (2.1) is often called the diffusion equation since it models diffusion
processes more generally, and the diffusion of heat is just one example. It is assumed that the basic
theory of this equation is familiar to the reader. See Appendix ?? for a brief derivation, or standard
PDE books such as [Kev90] for a better introduction. In general it is extremely valuable to understand
where the equation one is attempting to solve comes from, since a good understanding of the physics (or
biology, or whatever) is generally essential in understanding the development and behavior of numerical
methods for solving the equation.



10 Boundary Value Problems

2.2 Boundary conditions

If the material is homogeneous then x(z) = & is independent of z and the heat equation (2.1) reduces
to

w(z,t) = Kugq(z,t) + (2, t). (2.2)
Along with the equation we need initial conditions,
u(@,0) = u’(z),
and boundary conditions, for example the temperature might be specified at each end,
u(a,t) = a(t), u(b, t) = B(t). (2.3)

Such boundary conditions, where the value of the solution itself is specified, are called Dirichlet boundary
conditions. Alternatively, one or both ends might be insulated, in which case there is zero heat flux at
that end and so u, = 0 at that point. This boundary condition, which is a condition on the derivative
of w rather than on w itself, is called a Neumann boundary condition. To begin with we will consider
the Dirichlet problem for equation (2.2), with boundary conditions (2.3).

2.3 The steady-state problem

In general we expect the temperature distribution to change with time. However, if ¥(z,t), a(t), and
B(t) are all time-independent, then we might expect the solution to eventually reach a steady-state
solution u(x) which then remains essentially unchanged at later times. Typically there will be an initial
transient time, as the initial data u°(x) approaches u(x) (unless u’(z) = w(x)), but if we are only
interested in computing the steady state solution itself, then we can set u; = 0 in (2.2) and obtain an
ordinary differential equation in z to solve for u(x):

u(2) = f(x) (2.4)

where we introduce f(z) = —(z) to avoid minus signs below. This is a second order ODE and from
basic theory we expect to need two boundary conditions in order to specify a unique solution. In our
case we have the boundary conditions

u(a) = a, u(b) = 6. (2.5)

Remark 2.1 Having two boundary conditions does mot necessarily guarantee there ewxists a unique
solution for a general second order equation — see Section 2.13.

The problem (2.4), (2.5) is called a two-point boundary value problem since one condition is specified
at each of the two endpoints of the interval where the solution is desired. If instead we had 2 data
values specified at the same point, say u(a) = a,u/(a) = o, then we would have an initial value problem
instead. These problems are discussed in Chapter 6.

One approach to computing a numerical solution to a steady state problem is to choose some initial
data and march forward in time using a numerical method for the time-dependent equation (2.2),
as discussed in Section ??. However, this is typically not an efficient way to compute the steady-state
solution if this is all we want. Instead we can discretize and solve the two-point boundary value problem
given by (2.4) and (2.5) directly. This is the first boundary value problem that we will study in detail,
starting in the next section. Note that this problem is sufficiently simple... that we can solve it explicitly
(integrate f(x) twice and choose the two constants of integration so that the boundary conditions are
satisfied), but studying finite difference methods for this simple equation will reveal some of the essential
features of all such analysis, particularly the relation of the global error to the local truncation error
and the use of stability in making this connection. Later in this chapter we will consider some other
boundary value problems, including more challenging nonlinear equations.
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2.4 A simple finite difference method

As a first example of a finite difference method for solving a differential equation, consider the second
order ordinary differential equation

u"(x) = f(x) for 0<z <1 (2.6)
with some given boundary conditions
u(0) = a, u(1) = . (2.7)

The function f(x) is specified and we wish to determine u(z) in the interval 0 < z < 1. This problem
is called a two-point boundary value problem since boundary conditions are given at two distinct points.
This problem is so simple that we can solve it explicitly (integrate f(z) twice and choose the two
constants of integration so that the boundary conditions are satisfied), but studying finite difference
methods for this simple equation will reveal some of the essential features of all such analysis, particularly
the relation of the global error to the local truncation error and the use of stability in making this
connection.

We will attempt to compute a grid function consisting of values Uy, Ui, ..., Upn, U1 where U;
is our approximation to the solution u(z;). Here x; = jh and h = 1/(m + 1) is the mesh width, the
distance between grid points. From the boundary conditions we know that Uy = a and Uy, 41 = 8 and
so we have m unknown values Uy, ..., Uy to compute. If we replace u”(z) in (2.6) by the centered
difference approximation

1
D?U; = ﬁ(Uj_l —2U; 4+ Ujt1)
then we obtain a set of algebraic equations

1

E(Uj,1 —2U; +Ujt1) = f(zj) for j=1,2, ..., m. (2.8)

Note that the first equation (j = 1) involves the value Uy = « and the last equation (j = m) involves
the value Uy, 41 = 3. We have a linear system of m equations for the m unknowns, which can be written
in the form

AU = F (2.9)
where U is the vector of unknowns U = [Uy, Us, ..., Upy]T and
( -2 1 ] ( f(x1) —a/h? ]
1 -2 1 f(x2)
1 I -2 1 f(xs3)
A=+ , F= : (2.10)
I -2 1 f(@m—1)
L ) | fan) = pn |

This tridiagonal linear system is nonsingular and can be easily solved for U from any right hand side
F.

How well does U approximate the function u(z)? We know that the centered difference approxima-
tion D?, when applied to a known smooth function u(z), gives a second order accurate approximation
to u”(x). But here we are doing something more complicated — we know the values of u" at each point
and are computing a whole set of discrete values Uy, ..., U, with the property that applying D? to
these discrete values gives the desired values f(z;). While we might hope that this process also gives
errors that are O(h?) (and indeed it does), this is certainly not obvious.
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First we must clarify what we mean by the error in the discrete values Uy, ..., U, relative to the
true solution w(x), which is a function. Since Uj is supposed to approximate u(x;), it is natural to use
the pointwise errors U; — u(z;). If we let U be the vector of true values

U= (2.11)

then the error vector E defined by

contains the errors at each grid point.
Our goal is now to obtain a bound on the magnitude of this vector, showing that it is O(h?) as
h — 0. To measure the magnitude of this vector we must use some norm, for example the max-norm

1Ello = max |E;| = max |U;—ulz;)]
This is just the largest error over the interval. If we can show that ||E|s = O(h?) then it follows that
each pointwise error must be O(h?) as well.
Other norms are often used to measure grid functions, either because they are more appropriate for
a given problem or simply because they are easier to bound since some mathematical techniques work
only with a particular norm. Other norms that are frequently used include the 1-norm

1Bl =hY)_ |E)]
j=1

and the 2-norm
1/2

IEll2 = | 1) |E;
j=1

Note the factor of h that appears in these definitions. See Appendix A1l for a more thorough discussion
of grid function norms and how they relate to standard vector norms.

Now let’s return to the problem of estimating the error in our finite difference solution to the
boundary value problem obtained by solving the system (2.9). The technique we will use is absolutely
basic to the analysis of finite difference methods in general. It involves two key steps. We first compute
the local truncation error of the method and then use some form of stability to show that the global
error can be bounded in terms of the local truncation error.

The global error simply refers to the error U — U that we are attempting to bound. The local
truncation error (LTE) refers to the error in our finite difference approximation of derivatives, and
hence is something that can be easily estimated using Taylor series expansions as we have seen in
Chapter 1. Stability is the magic ingredient that allows us to go from these easily computed bounds to
the estimates we really want for the global error. Let’s look at each of these in turn.

2.5 Local truncation error

The LTE is defined by replacing U; by the true solution u(z;) in the finite difference formula (2.8). Of
course the true solution u(z;) won’t satisfy this equation exactly and the discrepancy is the LTE, which
we denote by 7;:

= %(U(%’fl) = 2u(z;) + u(zj1)) — flz;) (212)
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for j =1, 2, ..., m. Of course in practice we don’t know what the true solution u(z) is, but if we
assume it is smooth then by the Taylor series expansions (1.5a) we know that

1
7= (W) + ShR (eg) + OY)| = f(z;) (2.13)
Using our original differential equation (2.6) this becomes

1
T = Ehzu””(acj) + O(h%).

Although """ is in general unknown, it is some fixed function independent of h and so 7; = O(h?) as
h — 0.
If we define 7 to be the vector with components 7;, then

T=AU - F
where U is the vector of true solution values (2.11), and so

AU = F + 1. (2.14)

2.6 Global error

To obtain a relation between the local error 7 and the global error E = U — U , we subtract the equation
(2.14) from the equation (2.9) that defines U, obtaining

AE = —7. (2.15)

This is simply the matrix form of the system of equations

1

E(Ej,l —2Ej+ Ej41) = —7(xj) for j=1,2, ..., m.

with the boundary conditions
E(] = Em+1 =0

since we are using the exact boundary data Uy = a and U,,,11 = . We see that the global error satisfies
a set of finite difference equations that has exactly the same form as our original difference equations
for U, but with the right hand side given by —7 rather than F.

From this it should be clear why we expect the global error to be roughly the same magnitude as
the local error 7. We can interpret the system (2.15) as a discretization of the ODE

e'(r)=—7(z)for 0<z <1 (2.16)

with boundary conditions
e(0)=0, e(1)=0.

Since 7(z) & Lh*u""(z), integrating twice shows that the error should be roughly
1 2, 1 1 2 n " n
e(z) = —§h u'(z) + §h (u"(0) + z(u" (1) — 4" (0)))

and hence the error should be O(h?).
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2.7 Stability

The above argument is not completely convincing because we are relying on the assumption that solving
the difference equations gives a decent approximation to the solution of the underlying differential
equations. (Actually the converse now, that the solution to the differential equation (2.16) gives a good
indication of the solution to the difference equations (2.15).) Since it is exactly this assumption we are
trying to prove, the reasoning is rather circular.

Instead, let’s look directly at the discrete system (2.15) which we will rewrite in the form

AMEM = —rh (2.17)

where the superscript h indicates that we are on a grid with mesh spacing h. This serves as a reminder
that these quantities change as we refine the grid. In particular, the matrix A" is an m x m matrix
with A = 1/(m + 1) so that its dimension is growing as h — 0.

Let (A")~! be the inverse of this matrix. Then solving the system (2.17) gives

Eh — —(Ah)_lTh
and taking norms gives

IB" = [I(A")~ )
1AM HHIT"-

IA

We know that ||7"]| = O(h?) and we are hoping the same will be true of ||E"||. Tt is clear what we need
for this to be true: we need ||(4*)~'|| to be bounded by some constant independent of h as h — 0:

[(A")~!|| < C for all h sufficiently small.
Then we will have

IE"| < CliT| (2.18)

and so || E"|| goes to zero at least as fast as ||7"||. This motivates the following definition of stability for
linear boundary value problems.

Definition 2.7.1 Suppose a finite difference method for a linear boundary value problem gives a se-
quence of matriz equations of the form ARU" = Fh where h is the mesh width. We say that the method
is stable if (A"~ exists for all h sufficiently small (for h < ho, say) and if there is a constant C,
independent of h, such that

(A"~ < C for all h < hg. (2.19)

2.8 Consistency
We say that a method is consistent with the differential equation and boundary conditions if

||| = 0 as h — 0. (2.20)

This simply says that we have a sensible discretization of the problem. Typically ||7"| = O(hP) for
some integer p > 0, and then the method is certainly consistent.
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2.9 Convergence

A method is said to be convergent if |[E"|| — 0 as h — 0. Combining the ideas introduced above we
arrive at the conclusion that

consistency + stabilty = == convergence. (2.21)
This is easily proved by using (2.19) and (2.20) to obtain the bound
IEM < 1AM 7" < Cll7" | = 0 as b — 0.

Although this has been demonstrated only for the linear boundary value problem, in fact most anal-
yses of finite difference methods for differential equations follow this same two-tier approach, and the
statement (2.21) is sometimes called the fundamental theorem of finite difference methods. In fact, as
our above analysis indicates, this can generally be strengthened to say that

O(hP) local truncation error + stability =  O(h®) global error. (2.22)

Consistency (and the order of accuracy) is usually the easy part to check. Verifying stability is the
hard part. Even for the linear boundary value problem just discussed it is not at all clear how to check
the condition (2.19) since these matrices get larger as h — 0. For other problems it may not even be
clear how to define stability in an appropriate way. As we will see, there are many different definitions
of “stability” for different types of problems. The challenge in analyzing finite difference methods for
new classes of problems is often to find an appropriate definition of “stability” that allows one to prove
convergence using (2.21) while at the same time being sufficiently manageable that we can verify it
holds for specific finite difference methods. For nonlinear PDEs this frequently must be tuned to each
particular class of problems, and relies on existing mathematical theory and techniques of analysis for
this class of problems.

Whether or not one has a formal proof of convergence for a given method, it is always good practice
to check that the computer program is giving convergent behavior, at the rate expected. Appendix A2
contains a discussion of how the error in computed results can be estimated.

2.10 Stability in the 2-norm

Returning to the boundary value problem at the start of the chapter, let’s see how we can verify
stability and hence second-order accuracy. The technique used depends on what norm we wish to
consider. Here we will consider the 2-norm and see that we can show stability by explicitly computing
the eigenvectors and eigenvalues of the matrix A. In Section 2.12 we show stability in the max-norm
by different techniques.
Since the matrix A from (2.10) is symmetric, the 2-norm of A is equal to its spectral radius (see

Appendix Al):

Alls =p(4) = AP|.

4l = p(4) = max [V
The matrix A~! is also symmetric and the eigenvalues of A~! are simply the inverses of the eigenvalues
of A, so

1<p<m 1<p<m

-1
47 e = pA ) = max (0) )= (in ])

So all we need to do is compute the eigenvalues of A and show that they are bounded away from zero as
h — 0. Of course we have an infinite set of marices A” to consider, as h varies, but since the structure
of these matrices is so simple, we can obtain a general expression for the eigenvalues of each A*. For
more complicated problems we might not be able to do this, but it is worth going through in detail for
this problem because one often considers model problems for which such analysis is possible. We will
also need to know these eigenvalues for other purposes when we discuss parabolic equations later.
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We will now focus on one particular value of h = 1/(m + 1) and drop the superscript h to simplify
the notation. Then the m eigenvalues of A are given by

2
A= ﬁ(cos(pwh) —-1), for p=1,2, ..., m. (2.23)
The eigenvector u? corresponding to AP has components u;’ forj=1, 2, ..., m given by
ul = sin(pmjh). (2.24)

This can be verified by checking that Au? = APuP. The jth component of the vector Au? is

1

(AuP); = ﬁ(u§71—2u§+u§+1)

= %(sin(pw(j — 1)h) — 2sin(pmjh) + sin(pn(j + 1)h))
= %(Sin(mih) cos(prh) — 2sin(pmjh) + sin(prjh) cos(pmh))

_ \P,P
= /\uj.

Note that for j = 1 and j = m the jth component of AuP looks slightly different (the u} ; or u},,
term is missing) but that the above form and trigonometric manipulations are still valid provided that
we define

ug = ufn-ﬁ-l =0,
as is consistent with (2.24). From (2.23) we see that the smallest eigenvalue of A (in magnitude) is
1 2
A= ﬁ(COS(ﬂ'h) -1

2 Looio 1 44 6

= = (-Zr?h? + —x'h h
02 ( T gy O

= -1+ 0(h?).

This is clearly bounded away from zero as i — 0, and so we see that the method is stable in the 2-norm.
Moreover we get an error bound from this:

_ 1
£ 2 < A" THal" 12 & 5117l

Since 7} & 1h*u""(z;), we expect ||[T"|2 & Fh*||u"" |l = $h*||f"|l2, where now | - |2 refers to the
function space norm (A1.11).

Note that the eigenvector (2.24) is closely related to the eigenfunction of the corresponding differ-
ential operator 39—:2. The functions

uP (x) = sin(prx), p=1,2, 3, ...

satisfy the relation

62
ﬁup(x) = pPu®(z)
with eigenvalue u? = —p?n2. These functions also satisfy u?(0) = uP(1) = 0 and hence they are

eigenfunctions of 68—;2 on [0, 1] with homogeneous boundary conditions. The discrete approximation to
this operator given by the matrix A has only m eigenvalues instead of an infinite number, and the

corresponding eigenvectors (2.24) are simply the first m eigenfunctions of 88—:2 evaluated at the grid
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Figure 2.1: (a) Sample solution to the steady-state heat equation with a Neumann boundary condition
at the left boundary. Solid line is the true solution. + shows solution on a grid with 20 points using
(2.26). o shows the solution on the same grid using (2.28). (b) A log-log plot of the max-norm error as
the grid is refined is also shown for each case.

points. The eigenvalue AP is not exactly the same as pP, but at least for small values of p it is very
nearly the same, since by Taylor series expansion of the cosine in (2.23) gives

2 1. 1
P _ L9 232 4 474
A h2<2p7rh—|—24p7rh—l— )

= —p*n? + O(h*) as h — 0 for p fixed.

This relationship will be illustrated further when we study numerical methods for the heat equation
(2.1).

2.11 Neumann boundary conditions

Suppose now that we have one or more Neumann boundary conditions, instead of Dirichlet boundary
conditions, meaning that a boundary condition on the derivative u’ is given rather than a condition on
the value of u itself. For example, in our heat conduction example we might have one end of the rod
insulated so that there is no heat flux through this end and hence u' = 0 there. More generally we
might have heat flux at a specified rate giving v’ = o at this boundary.

We first consider the equation (2.4) with boundary conditions

W) =0, u(l) =4 (2.25)

Figure 2.1 shows the solution to this problem with f(z) =¢e*, 0 =0, and 8 = 0 as one example.

Exercise 2.1 Determine the function shown in Figure 2.1 by solving the problem exactly.

To solve this problem numerically, we need to introduce one more unknown than we previously had:
Up at the point zp = 0 since this is now an unknown value. We also need to augment the system (2.9)
with one more equation that models the boundary condition (2.25).

First attempt. As a first try, we might use a one-sided expression for u'(0), such as

@ =o. (2.26)

If we append this equation to the system (2.9), we obtain the following system of equations for the
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unknowns Uy, Ui, ... ,Uy:
-1 1 1 ( U ] o/h
1 -2 1 Uy f(z1)
. 1 -2 1 Us f(z2)
5 1 -2 1 Qs f(frz) (2.27)
1 -2 1 Upp—1 f(xm_1)
i 1 -2 ] L Un | | f(zm) — B/R* ]

Solving this system of equations does give an approximation to the true solution (see Figure 2.1) but
checking the errors shows that this is only first order accurate. Figure 2.1 also shows a log-log plot
of the max-norm errors as we refine the grid. The problem is that the local truncation error of the
approximation (2.26) is O(h), since

0 = %(hu(ml) — hu(xzg)) — o

1
70 = u'(wo)+ §hu"(aco) +0(Mh?*) -0
= (wo) + O(R?)

This translates into a global error that is only O(h) as well.

REMARK: It is often possible to achieve second order accuracy even if the local truncation error is
O(h) at a single point as long as it is O(h?) everywhere else. But this is not true in the case we are
now discussing. See Chapter 7?7 for more discussion of this.

Exercise 2.2 Show that the method we have just discussed is stable in the 2-norm, following the tech-
nique of Section 2.10. Hint: The eigenvectors of the matriz in (2.27) are again obtained by simply

discretizing the eigenfunctions of the corresponding differential operator %, with boundary conditions
u'(0) = u(1) = 0.

Second attempt. To obtain a second-order accurate method, we should use a centered approxi-
mation to u'(0) = ¢ instead of the one-sided approximation (2.26). We can introduce another unknown
U_; and instead of the single equation (2.26) use the following two equations:

1

e (U_1 —2Up+ Uy) = f(wo)

1
20

(2.28)
(U1 - Ufl) =0

This results in a system of m + 2 equations. (What is the matrix?)

Introducing the unknown U_; outside the interval [0,1] where the original problem is posed may
seem unsatisfactory. We can avoid this by eliminating the unknown U_; from the two equations (2.28),
resulting in a single equation that can be written as

1 h
E(—Uo +U1) =0+ §f($0)- (2.29)
We have now reduced the system to one with only m + 1 equations for the unknowns Uy, Uy, ..., Up.

The matrix is exactly the same as the matrix in (2.27), which came from the one-sided approximation.
The only difference in the linear system is that the first element in the right hand side of (2.27) is now
changed from o/h to o/h + 5 f(zo). We can interpret this as using the one-sided approximation to
u’(0), but with a modified value for this Neumann boundary condition that adjusts for the fact that
the approximation has an O(h) error by introducing the same error in the data o.
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Exercise 2.3 Show that the local truncation error 7o is now O(h?). Hint: Note that f(zo) = u"(zq).

Combining the results of Exercise 2.2 and Exercise 2.3 shows that this method is second order
accurate in the 2-norm.

2.12 Green’s functions and max-norm stability

In Section 2.10 we demonstrated that A from (2.10) is stable in the 2-norm, and hence that || E|2 =
O(h?). Suppose, however, that we want a bound on the maximum error over the interval, i.e., a bound
on | E||cc = max |E;|. We can obtain one such bound directly from the bound we have for the 2-norm.
From (A1.16) we know that

1
E 00 S T
1] Th
However, this does not show the second order accuracy that we hope to have. To show that ||E|lec =
O(h?) we will explicitly calculate the inverse of A and then show that ||A™!|| = O(1), and hence

1Bl < A7 lsolITlloo = O(R)

|E|ls = O(h*/?) as h — 0.

since ||7]|oc = O(h?). As in the computation of the eigenvalues in the last section, we can only do this
because our model problem (2.6) is so simple. In general it would be impossible to obtain closed form
expressions for the inverse of the matrices A" as h varies. But again it is worth working out the details
for this case because it gives a great deal of insight into the nature of the inverse matrix and what it
represents more generally.

Each column of the inverse matrix can be interpreted as the solution of a particular boundary
value problem. The columns are discrete approximations to the Green’s functions that are commonly
introduced in the study of the differential equation. An understanding of this is very valuable in
developing an intuition for what happens if we introduce relatively large errors at a few points within
the interval. Such difficulties arise frequently in practice, typically at the boundary or at an internal
interface where there are discontinuities in the data or solution.

Let e; € R™ be the jth coordinate vector or unit vector with the value 1 as its jth element and
all other elements equal to 0. If B is any matrix then the vector Be; is simply the jth column of the
matrix B. So the jth column of A™! is A7 'e;. Let’s call this vector v for the time being. Then v is
the solution of the linear system

Av = ej. (2.30)

This can be viewed as an approximation to a boundary value problem of the form (2.6),(2.7) where
a=p=0and f(z;) =0 unless i = j, with f(z;) = 1. This may seem like a rather strange function f,
but it corresponds to the delta function that is used in defining Green’s functions (or more exactly to a
delta function scaled by h). We will come back to the problem of determining the jth column of A~}
after a brief review of delta functions and Green’s functions for the differential equation.

The delta function, (), is not an ordinary function but rather the mathematical idealization of a
sharply peaked function that is nonzero over an interval (—e, €) near the origin and has the property
that

/_OO O (z)dx = _e ¢e(z)dz = 1. (2.31)

The exact shape of ¢, is not important, but note that it must attain a height that is O(1/€) in order
for the integral to have the value 1. We can think of the delta function as being a sort of limiting case
of such functions as € — 0. These functions naturally arise when we differentiate functions that are
discontinuous. For example, consider the Heaviside function (or step function) H(z) that is defined by

H(z) = { 0 ;8 (2.32)
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Figure 2.2: (a) The Green’s function (2.33) for the Dirichlet problem. (b) The Green’s function for the
mixed problem with u'(0) = u(1) = 0.

What is the derivative of this function? For z # 0 the function is constant and so H'(z) = 0. At
z = 0 the derivative is not defined in the classical sense. But if we smooth out the function a little bit,
making it continuous and differentiable by changing H(z) only on the interval (—e,€), then the new
function H.(x) is differentiable everywhere and has a derivative H](z) that looks something like ¢.(x).
The exact shape of H!(z) depends on how we choose H,(z), but note that regardless of its shape, its
integral must be 1, since

H!(x)dx
= Hc(e) — H(—¢)
= 1-0=1

[ O; H(2) da

This explains the normalization (2.31). By letting ¢ — 0, we are led to define
H'(z) = §(z).

This expression makes no sense in terms of the classical definition of derivatives, but can be made
rigorous mathematically through the use of “distribution theory”. For our purposes it suffices to think
of the delta function as being a very sharply peaked function with total integral 1.

Now consider the function G(x) shown in Figure 2.2(a):

e { 60 s a
where Z is some point in the interval [0, 1]. The derivative of G(z) is piecewise constant:

cw={i" mist
If we define G'(Z) = &, then we can write this as

G'(z)=z—-1+H(z - z).
Differentiating again then gives
G'"(z) = é(z — 7).

It follows that the function G(z) is the solution to the boundary value problem

uw'(z) =0z —z)for 0<z <1 (2.34)

with homogeneous boundary conditions

w(0)=0,  u(l)=0. (2.35)
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This function is called the Green’s function for the problem (2.6),(2.7) and is generally written as G(z; %)
to show the dependence of the function G(z) on the parameter Z, the location of the delta function
source term.

The solution to the boundary value problem (2.6),(2.7) for more general f(z) and boundary condi-
tions can be written as

u(z) = a(l —z) + fz + /0 G(x; &) f(€) dE. (2.36)

This integral can be viewed as a linear combination of the functions G(z; €) at each point &, with weights
given by the strength of the source term at each such point.

Returning now to the question of determining the columns of the matrix A~! by solving the systems
(2.30), we see that the right hand side e; can be viewed as a discrete version of the delta function,
scaled by h. So the system (2.30) is a discrete version of the problem

v"(z) = hé(z — ;)

with homogeneous boundary conditions, whose solution is v(z) = hG(z;x;). We therefore expect the
vector v to approximate this function. In fact it is easy to confirm that we can obtain the vector v by
simply evaluating the function v(z) at each grid point, so v; = hG(x;; ;). This can be easily checked
by verifying that multiplication by the matrix A gives the unit vector ;.

If we now let G be the inverse matrix, G = A~!, then the jth column of G is exactly the vector v
found above, and so the elements of G are:

M@V i=1,2, ...,
Gu_{h(xi—l)xj i=j4,7+1, ..., m. (2.37)

Note that each of the elements of G is bounded by h in magnitude. From this we obtain an explicit
bound on the max-norm of G:

m
A oo = 12@;2 |G| < mh < 1.
Sism

This is uniformly bounded as h — 0 and so the method is stable in the max-norm. Since ||7||o = O(h?),
the method is second order accurate in the max-norm and the pointwise error at each grid point is O(h?).

Note, by the way, that the representation (2.36) of the true solution u(x) as a superposition of the
Green’s functions G(z; £), weighted by the values of the right hand side f(§), has a direct analog for the
solution U to the difference equation AU = F. The solution is U = A~ F = G f, which can be written
as

Ui=Y_ GijF;.
i=1

Using the form of F' from (2.10) and the expression (2.37) shows that

m—1
a B
U, = _EG“ - ﬁGim + Z Gijf(z;)
j=2
m—1
= a(l —a) + fri+h Y Glai;z)) f(x),
j=2

which is simply the discrete form of (2.36).

Exercise 2.4 Write out the 4 x 4 matriz A and inverse matriz A~% explicitly for the case h = 0.25. If
f(z) = z, determine the discrete approzimation to the solution of the boundary value problem on this
grid and sketch this solution and the 4 Green’s functions whose sum gives this solution.



22 Boundary Value Problems

Exercise 2.5 Consider the mized Dirichlet-Neumann problem with u'(0) = u(1) = 0 and determine
the Green’s function shown in Figure 2.2(b). Using this as guidance, find the inverse of the matriz in
(2.27).

2.13 Existence and uniqueness

In trying to solve a mathematical problem by a numerical method, it is always a good idea to check that
the original problem has a solution, and in fact that it is well posed in the sense developed originally by
Hadamard. This means that the problem should have a unique solution which depends continuously on
the data used to define the problem. In this section we will show that even seemingly simple boundary
value problems may fail to be well posed.

First consider the problem of the previous section, but now suppose we have Neumann boundary
conditions at both ends, i.e., we have the equation (2.6) with

U,’(O)ZU(), U’(].) =01.

In this case the techniques of the previous section would naturally lead us to the discrete system

-1 1 ( Uo ( oo/h — 3 f(xo)
1 -2 1 U, f(z1)
1 -2 1 Us f(z2)
1 1 -2 Us flzxs)
h2
. : : (2.38)
1 -2 1 Un, f(@m)
L 1 -1 1 L Um+1 | L O'1/h+ %f($m+1) |

If we try to solve this system, however, we will soon discover that the matrix is singular, and in general
the system has no solution. (Or, if the right hand side happens to lie in the range of the matrix, it has
infinitely many solutions.) It is easy to verify that the matrix is singular by noting that the constant
vector e = [1, 1, ..., 1]7 is an eigenvector with eigenvalue 0.

This is not a failure in our numerical model. In fact it reflects the fact that the problem we are
attempting to solve is not well posed, and the differential equation will also have either no solution
or infinitely many. This can be easily understood physically by again considering the underlying heat
equation discussed in Section 2.1. First consider the case o9 = 01 = 0 and f(z) = 0 so that both
ends of the rod are insulated and there is no heat flux through the ends, and no heat source within
the rod. Recall that the boundary value problem is a simplified equation for finding the steady state
solution of the heat equation (2.2), with some initial data u°(z). How does u(x,t) behave with time?
In the case now being considered the total heat energy in the rod must be conserved with time, so
fol u(z,t)dz = fol u®(z) dz for all time. Diffusion of the heat tends to redistribute it until it is uniformly
distributed throughout the rod, so we expect the steady state solution u(z) to be constant in x,

u(z) =c (2.39)

where the constant ¢ depends on the initial data u°(x). In fact, by conservation of energy, ¢ =
fol u®(x) dz for our rod of unit length. But notice now that any constant function of the form (2.39) is
a solution of the steady-state boundary value problem, since it satisfies all the conditions u'(z) = 0,
uw'(0) = u'(1) = 0. The ordinary differential equation has infinitely many solutions in this case. The
physical problem has only one solution, but in attempting to simplify it by solving for the steady state
alone, we have thrown away a crucial piece of data, the heat content of the initial data for the heat
equation. If at least one boundary condition is a Dirichlet condition, then it can be shown that the
steady-state solution is independent of the initial data and we can solve the boundary value problem
uniquely, but not in the present case.
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Now suppose that we have a source term f(z) that is not identically zero, say f(z) < 0 everywhere.
Then we are constantly adding heat to the rod (recall that f = —). Since no heat can escape through
the insulated ends, we expect the temperature to keep rising without bound. In this case we never
reach a steady state, and the boundary value problem has no solution.

Exercise 2.6 What condition is required on the function f(x) to guarantee that a steady state exists
for the original differential equation? What is the condition if oo and/or o1 are nonzero? How do these
conditions relate to the requirement that the right hand side of (2.38) must lie in the range of the matriz
in order for the discrete approzimation to have solutions?

Exercise 2.7 Consider the following linear boundary value problem with Dirichlet boundary conditions:

u'(z) +u(z) =0 forO<z<m
u(0) =a, u(r)=p.

For what values of a and B does this have solutions? Sketch a family of solutions in a case where there
are infinitely many solutions.

(2.40)

2.14 A general linear second order equation
We now consider the more general linear equation
a(w)u” (z) + b(a) (x) + c(2)u(z) = f(a) (2.41)
together with two boundary conditions, say the Dirichlet conditions
u(a) = a, u(b) = . (2.42)
This equation can be discretized to second order by

Ui—1 —2U; + U; Uit1 — Ui
ai( i—1 h2z z+1>+bi< z+12h i—1

> +cU; = fi (2.43)

where, for example, a; = a(x;). This gives the linear system AU = F where A is the tridiagonal matrix

[ (h201 — 2a1) (a1 + hb1/2) 1
(CLQ — hb2/2) (h262 — 2&2) (CLQ + hb2/2)
1 . . .
A=
(2.44)
(am_1 — hbm_1/2) (h2cm_1 — 2am_1) (am_1 + hbm_1/2)
i (@m — hbpm /2) (h2cpm — 2am)
and
Uy fi = (a1/h? + b1 /2h)a
U2 f2
v=| : |, F= : (2.45)
Umfl fmfl
Um fm - (am/h2 - bm/2h)ﬂ

This linear system can be solved with standard techniques, assuming the matrix is nonsingular. A
singular matrix would be a sign that the discrete system does not have a unique solution, which may
occur if the original problem, or a nearby problem, is not well posed (see Section 2.13.
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The discretization used above, while second order accurate, may not be the best discretization to
use for certain problems of this type. Often the physical problem has certain properties that we would
like to preserve with our discretization, and it is important to understand the underlying problem and
be aware of it mathematical properties before blindly applying a numerical method. The next example
illustrates this

Example 2.1. Consider heat conduction in a rod with varying heat conduction properties, so the
parameter k(z) varies with = and is always positive. The steady state heat-conduction problem is then

(k(z)u'(x))" = f(2) (2.46)

together with some boundary conditions, say the Dirichlet conditions (2.42). To discretize this equation
we might be tempted to apply the chain rule to rewrite (2.46) as

K@) (2) + & (2)u'(2) = f(2) (2.47)

and then apply the discretization (2.44), yielding the matrix

( -2k (k1 + h&l/2) W
(k2 — hKy/2) —2Ks (k2 + hKy/2)
1 . . -
A= —
h (2.48)
(s = Wit /2) =261 (Rt + Wiy [2)
| (o — B} /2) B

However, this is not the best approach. It is better to discretize the physical problem (2.47) directly.
This can be done by first approximating k(z)u'(z) at points halfway between the grid points, using a
centered approximation,

Uit1 — Ui)

ﬂ($i+1/2)ul(fCi+1/2) = Kit1/2 < A

and then applying another centered difference to approximate the derivatives of this quantity:

1 Uiy1 = Ui Ui —U;-
(k') (z;) = 7, | Fit1/2 <%) — Ri—1/2 <T1>]
X (2.49)
= ﬁ[/‘%—lpUFl — (Kic1/2 + Kig1/2)Ui + Kip1/2Uig].
This leads to the matrix
( — (K12 + K3)2) K3/2 i
K3/2 —(K3/2 + Ks)2) Ks5/2
A _ % -, ) -, ) -, . ‘
(2.50)
Km—3/2 ~(Km—3/2 + Km—1/2) Km—1/2
L Km—1/2 —(Fm—1/2 + Emy1/2) |

Comparing (2.48) with (2.50), we see that they agree to O(h?), noting for example that
1 . 1
K(Ziy1/2) = k(z;) + Ehn"(xi) +O(h?) = K(wiy1) — Eh/@'(xi_,_l) +O(h?).

However, the matrix (2.50) has the advantage of being symmetric as we would hope for since the original
differential equation is self adjoint (see Appendix A4). Moreover since k¥ > 0 the matrix can be shown
to be negative definite, meaning that all the eigenvalues are negative, a property also shared by the

differential operator %n(w)%. It is generally desirable to have important properties such as these
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modeled by the discrete approximation to the differential equation. One can then show, for example,
that the solution to the difference equations satisfies a mazimum principle of the same type as the
solution to the differential equation: for the homogeneous equation with f(z) = 0, the values of u(z) lie
between the values of the boundary values « and g3 everywhere, so the maximum and minimum values
of u arise on the boundaries. See Appendix A4 for more discussion.

When solving the resulting linear system by iterative methods (see Chapter 3 and Chapter 5) it is
also often desirable that the matrix have properties such as negative definiteness, since some iterative
methods (e.g., the conjugate-gradient method, Section 5.2) depend on such properties.

Exercise 2.8 Show that the matriz A appearing in (2.50) is negative definite provided that k > 0
everywhere. Recall that A is negative definite if UL AU < 0 for all vectors U that are not identically
zero.

Exercise 2.9 Show that solutions to the homogeneous problem satisfy the mazimum principle when the
discretization (2.50) is used.

2.15 Nonlinear Equations

We next consider a nonlinear boundary value problem to illustrate the new complications that arise in
this case. We will consider a specific example which has a simple physical interpretation that makes
it easy to understand and interpret solutions. This example also illustrates that not all 2-point BVP’s
are steady-state problems,

Counsider the motion of a pendulum with mass m at the end of a rigid (but massless) bar of length L,
and let 6(t) be the angle of the pendulum from vertical at time ¢, as illustrated in Figure 2.3. Ignoring
the mass of the bar and forces of friction and air resistance, the differential equation for the pendulum
motion can be well approximated by

0" (t) = —(g/L)sin(6(t)) (2.51)
where g is the gravitational constant. Taking g/L = 1 for simplicity we have
0" (t) = —sin(6(t)) (2.52)

as our model problem.
For small amplitudes 6 it is possible to approximate sin(f) ~ € and obtain the approximate linear
differential equation

0" (t) = —0(t) (2.53)

with general solutions of the form A cos(t) + Bsin(t). The motion of a pendulum that is oscillating only
a small amount about the equilibrium at 8§ = 0 can be well approximated by this sinusoidal motion,
which has period 27 independent of the amplitude. For larger amplitude motions, however, solving
(2.53) does not give good approximations to the true behavior. Figures 2.3(b) and (¢) show some
sample solutions to the two equations.

To fully describe the problem we also need to specify two auxiliary conditions in addition to the
second-order differential equation (2.52). For the pendulum problem the initial value problem is most
natural — we set the pendulum swinging from some initial position #(0) with some initial velocity 6’(0),
which gives two initial conditions that are enough to determine a unique solution at all later times.

To obtain instead a BVP, consider the situation in which we wish to set the pendulum swinging
from some initial given location #(0) = « with some unknown velocity 6'(0), in such a way that the
pendulum will be at a desired location #(7") = 8 at some specified later time 7. Then we have a 2-point
BVP

0"(t) = —sin(6(t)) for0<t < T,

000)=ca,  6(T)=p. (2.54)
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Figure 2.3: (a) Pendulum. (b) Solutions to the linear equation (2.53) for various initial 8 and zero initial
velocity. (c) Solutions to the nonlinear equation (2.52) for various initial 6 and zero initial velocity.

Similar BVP’s do arise in more practical situations, for example trying to shoot a missle in such a way
that it hits a desired target. In fact this latter example gives rise to the name shooting method for
another approach to solving 2-point BVP’s that is discussed in [AMRSS], [Kel76], for example.

2.15.1 Discretization of the nonlinear BVP

We can discretize the nonlinear problem (2.52) in the obvious manner, following our approach for linear
problems, to obtain the system of equations

1 .
ﬁwi*l —26; + 0i+1) + s1n(0,~) =0 (2.55)
fori=1, 2, ..., m, where h=T/(m + 1) and we set 6y = o and 6,,,11 = 8. As in the linear case, we

have a system of m equations for m unknowns. However, this is now a nonlinear system of equations
of the form

GO) =0 (2.56)

where G : R™ — IR™, which cannot be solved as easily as the tridiagonal linear systems encountered
so far. Instead of a direct method we must generally use some iterative method such as Newton’s
method. If 1% is our approximation to # in Step k, then Newton’s method is derived via the Taylor
series expansion

G(g[k+11) - G(g[lﬂ) + G'(g[k])(g[kﬂ] — g[lﬂ) 4.

Setting G(A**1]) = 0 as desired, and dropping the higher order terms, results in
0= G(O™) 4+ G"(61)) (plh+1] — glk]y,
This gives the Newton update
plk+1l — glkl 4 slK] (2.57)
where 6l solves the linear system

JUI§IE = —q(glk]). (2.58)
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(a) 0 1 2 3 3 5 6 7 (b) 0 1 2 3 3 5 6 7

Figure 2.4: Convergence of Newton iterates towards a solution of the pendulum problem. The iterates
6kl for k =1, 2, --- are denoted by the number k in the plots. (a) Starting from 0£0] = 0.7cos(t;) +
0.5sin(t;) (b) Starting from 6\ = 0.7.

Here JU¥ = G'(6[*) € R™*™ is the Jacobian matriz with elements

Jij = Gi(0)

96;

where G;(0) is the i’th component of the vector-valued function G. In our case G;(0) is exactly the
left-hand side of (2.55) and hence

1/h? if j=i—lorj=i+1
Jij =< —2/h*+cos(8;) if j=i
0 otherwise
so that
(=2 + 12 cos(6)) 1

1 (=2 + h2cos(6)) 1

(2.59)
1 (=2 + h?cos(6%))

In each iteration of Newton’s method we must solve a tridiagonal linear system similar to the single
tridiagonal system that must be solved in the linear case.

A simple MATLAB program which applies Newton’s method to this system can be found on anony-
mous ftp in pub/Classes/585/matlab/pendulum.m. The program is set up to solve the problem with
T = 2w, a = 8 = 0.7. Note that the linear problem (2.53) has infinitely many solutions in this particular
case since the linearized pendulum has period 27 independent of the amplitude of motion. (See Fig-
ure 2.3 and Exercise 2.7. What are the solutions?) This is not true of the nonlinear equation, however,
and so we might expect a unique solution to the full nonlinear problem. With Newton’s method we
need an initial guess for the solution, and in the program we take a particular solution to the linearized
problem, the one with initial velocity 0.5, as a first approximation, i.e., 01[0} = 0.7 cos(t;) + 0.5sin(t;).
Figure 2.4 shows the different 0¥ for £ = 0, 1, 2, --- that are obtained as we iterate with Newton’s
method. They rapidly converge to a solution to the nonlinear system (2.55). (Note that the solution
looks similar to the solution to the linearized equation with 6'(0) = 0, as we should have expected, and
taking this as the initial guess, 8[° = 0.7 cos(t), would have given even more rapid convergence.)
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Table 2.1: Change ||6!¥]|| . in solution in each iteration of Newton’s method.

k | Figure 2.4(a) | Figure 2.5
0| 3.2841e—01 | 4.2047e+00
1| 1.7518e—01 | 5.3899e+00
2 | 3.1045e—02 | 8.1993e400
3| 2.3739e—04 | 7.7111e—01
4| 1.5287e—08 | 3.8154e—02
5| 5.8197e—15 | 2.2490e—04
6 | 1.5856e—15 | 9.1667e—09
7 1.3395e—15

The program prints out ||§l¥!||,, in each iteration, which measures the change in the solution. These
are shown in Table 2.1. As expected, Newton’s method appears to be converging quadratically (see
Appendix A3).

If we start with a different initial guess 6% (but still close enough to this solution), we would find
that the method still converges to this same solution. For example, Figure 2.4(b) shows the iterates
9%l for k=0, 1, 2, --- with a different choice 1 = 0.7.

2.15.2 Nonconvergence

Newton’s method can be shown to converge if we start with an initial guess that is sufficiently close to
a solution. How close is needed depends on the nature of the problem and is described by the Newton-
Kantorovich Theorem, see, e.g., [?]. For the problem considered above one need not start very close to
the solution to converge, as seen in the examples, but for more sensitive problems one might have to
start extremely close. In such cases it may be necessary to use a technique such as continuation to find
suitable initial data.

2.15.3 Nonuniqueness

The nonlinear problem does not have an infinite family of solutions the way the linear equation does
on the interval [0, 27], and the solution found above is an isolated solution in the sense that there are
no other solutions very nearby (it is also said to be locally unique). However, it does not follow that
this is the unique solution to the BVP (2.54). In fact physically we should expect other solutions. The
solution we found corresponds to releasing the pendulum with nearly zero initial velocity. It swings
through nearly one complete cycle and returns to the initial position at time 7'.

Another possibility would be to propel the pendulum upwards so that it rises towards the top (an
unstable equilibrium) at § = &, before falling back down. By specifying the correct velocity we should
be able to arrange it so that the pendulum has fallen back to § = 0.7 again at 7' = 2n. In fact it is
possible to find such a solution for any 7" > 0.

Physically it seems clear that there is a second solution to the BVP. In order to find it numerically
we can use the same iteration as before, but with a different initial guess 1% that is sufficiently close
to this solution. Since we are now looking for a solution where 6§ initially increases and then falls again,
let’s try a function with this general shape. In Figure 2.5 we see the iterates 6!k generated with data
GEO] = 0.7 + sin(x;/2). We have gotten lucky here on our first attempt, and we get convergence to a
solution of the desired form. (See Table 2.1.) Different guesses with the same general shape might not
work. Note that some of the iterates 8l¥! obtained along the way in Figure 2.5 do not make physical sense
(since 0 goes above 7 and then back down — what does this mean?), but the method still converges.

Exercise 2.10 See if you can find yet another solution to this BVP.
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Figure 2.5: Convergence of Newton iterates towards a different solution of the pendulum problem, by
starting with initial guess GEO] = 0.7 + sin(x;). The iterates A for nu = 1, 2, --- are denoted by the
number k in the plots.

Exercise 2.11 Find a numerical solution to this BVP with the same general behavior as seen in Fig-
ure 2.5 for the case a longer time interval, say T = 20, again with o = 8 =0.7. Try larger values of T.
What does max; 0; approach as T is increased? Note that for large T this solution exhibits “boundary
layers” (see Section 2.16).

2.15.4 Accuracy

The solutions plotted above are not exact solutions to the BVP (2.54). They are only solutions to the
discrete system of equations (2.55) with & = 1/80. How well do they approximate true solutions of the
differential equation? Since we have used a second order accurate centered approximation to the second
derivative in (2.8), we again hope to obtain second-order accuracy as the grid is refined. In this section
we will investigate this.

Note that it is very important to keep clear the distinction between the convergence of Newton’s
method to a solution of the finite difference equations, and the convergence of this finite-difference
approximation to the solution of the differential equation. Table 2.1 indicates that we have obtained a
solution to machine accuracy (roughly 1071%) of the nonlinear system of equations by using Newton’s
method. This does not mean that our solution agrees with the true solution of the differential equation
to the same degree. This depends on the size of h, the size of the truncation error in our finite-difference
approximation, and the relation between the local truncation error and the resulting global error.

Let’s start by computing the local truncation error of the finite-difference formula. Just as in the
linear case, we define this by inserting the true solution of the differential equation into the finite-
difference equations. This will not satisfy the equations exactly, and the residual is what we call the
local truncation error:

T = %(G(ti,l) — 20(1}@) + e(t,’+1)) + sin(G(ti))
— (0" (1) + sin(0(t:))) + %;ﬁe""(ti) +O(hY) (2.60)

_ %hzﬁ””(ti) +O(mY).

Note that we have used the differential equation to set 6" (¢;) + sin(6(¢;)) = 0, which holds exactly since
6(t) is the exact solution. The local truncation error is O(h?) and has exactly the same form as we
found in the linear case. (For a more complicated nonlinear problem it might not work out so simply,

~

see Exercise 77, but similar expressions result.) The vector 7 with components 7; is simply G(6), where
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6 is the vector made up of the true solution at each grid point. We now want to obtain an estimate on
the global error E based on this local error. We can attempt to follow the path used in Section 2.6 for
linear problems. We have

GO = 0
GO =
and subtracting gives
G(9) — G(6) = —. (2.61)

If G were linear (G(#) = A8 — F) we would have G(§) — G(f) = A — A9 = A(0 — §) = AE, giving an
expression in terms of the global error £ =6 — 6. This is what we used in Section 2.7.

In the nonlinear case we cannot express G(6) — G(6) directly in terms of § — §. However, we can
use Taylor series expansions to write

G(6) = G(0) + J(O)E + O(| E|*)
where J(f) is again the Jacobian matrix of the difference formulas, evaluated now at the exact solution.
Combining this with (2.61) gives
JO)E = -7+ O(||E||?).

If we ignore the higher order terms then we again have a linear relation between the local and global
€ITOrS.

This motivates the following definition of stability. Here we let J" denote the Jacobian matrix of
the difference formulas evaluated at the true solution on a grid with grid-spacing h.

Definition 2.15.1 The nonlinear difference method G(0) = 0 is stable in some norm ||| if the matrices
(J™) =L are uniformly bounded in this norm as h — 0, i.e., there exist constants C' and hy such that

(T < C for all h < hy. (2.62)

It can be shown that if the method is stable in this sense, and consistent in this norm (||7%|| — 0),
then the method converges and ||E"|| — 0 as h — 0. This is not obvious in the nonlinear case: we
obtain a linear system for E only by dropping the O(||E||*) nonlinear terms. Since we are trying to
show that E is small, we can’t necessarily assume that these terms are negligible in the course of the
proof, at least not without some care. See [Kel76] for a proof.

It makes sense that it is uniform boundedness of the inverse Jacobian at the exact solution that
is required for stability. After all, it is essentially this Jacobian matrix that is used in solving linear
systems in the course of Newton’s method, once we get very close to the solution.

WARNING: A final reminder that there is a difference between convergence of the difference method
as h — 0 and convergence of Newton’s method, or some other iterative method, to the solution of
the difference equations for some particular h. Stability of the difference method does not imply that
Newton’s method will converge from a poor initial guess. (Though it can be shown that for a stable
method it will converge from a sufficiently good initial guess — see [Kel76].) Also, the fact that Newton’s
method has converged to a solution of the nonlinear system of difference equations, with an error of
10715, say, does not mean that we have a good solution to the original differential equation. The global
error of the difference equations determines this.

2.16 Singular perturbations and boundary layers

In this section we consider some singular perturbation problems to illustrate the difficulties that can
arise in numerically solving problems with boundary layers or other regions where the solution varies
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rapidly. See [Kev90], [KC81] for more detailed discussions of singular perturbation problems. In
particular the example used here is very similar to one that can be found in [Kev90], where solution by
matched asymptotic expansions is discussed.

As a simple example we consider a steady-state advection-diffusion equation. The time-dependent
equation is discussed in Appendix 7?7 and has the form

U + AUy = Klgy + U (2.63)

in the simplest case. This models the temperature u(z, t) of a fluid flowing through a pipe with constant
velocity a, where the fluid has constant heat diffusion coefficient &, and 1 is a source term from heating
through the walls of the tube.

If @ > 0 then we naturally have a boundary condition at the left boundary (say = = 0),

u(0,t) = a(t)

specifying the temperature of the incoming fluid. At the right boundary (say z = 1) the fluid is flowing
out and so it may seem that the temperature is determined only by what is happening in the pipe and
no boundary condition is needed here. This is correct if kK = 0 since the first order advection equation
needs only one boundary condition and we are allowed to specify u only at the left boundary. However,
if £ > 0 then heat can diffuse upstream, and we need to also specify u(1,t) = 3(t) in order to determine
a unique solution.

If a, B, and ¢ are all independent of ¢ then we expect a steady state solution, which we hope to
find by solving the linear 2-point boundary value problem

" (2) + ()
u(0) = a, u(l) = 4.

2
:\

S

A
Il

(2.64)

This can be discretized using the approach of Section 2.4. If a is small relative to x, then this problem
is easy to solve. In fact for ¢ = 0 this is just the steady-state heat equation discussed in Section 2.14
and for small a the solution looks nearly identical.

But now suppose a is large relative to x (i.e., we crank up the velocity, or we decrease the ability
of heat to diffuse with the velocity a > 0 fixed). More properly we should work in terms of the
nondimensional Péclet number which measures the ratio of advection velocity to transport speed due
to diffusion. Here we introduce a parameter e which is like the inverse of the Péclet number, € = k/a,
and rewrite the equation (2.64) in the form

ew' (z) —u'(z) = f(z). (2.65)

Then taking a large relative to k (large Péclet number) corresponds to the case € <« 1.

We should expect difficulties physically in this case where advection overwhelms diffusion. It would
be very difficult to maintain a fixed temperature at the outflow end of the tube in this situation. If we
had a thermal device that was capable of doing so by instantaneously heating the fluid to the desired
temperature as it passes the right boundary, independent of the temperature of the fluid flowing towards
this point, then we would expect the temperature distribution to be essentially discontinuous at this
boundary.

Mathematically we expect trouble as € — 0 because in the limit € = 0 the equation (2.65) reduces
to a first order equation

—u'(x) = f(x) (2.66)

which allows only one boundary condition, rather than two. For € > 0, no matter how small, we have a
second order equation that needs two conditions, but we expect to perhaps see strange behavior at the
outflow boundary as € — 0, since in the limit we are overspecifying the problem.
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Figure 2.6: (a) Solutions to the steady-state advection-diffusion equation (2.65) for different values of
€. The four lines correspond to € = 0.3, 0.1, 0.05 and 0.01 from top to bottom. (b) Numerical solution
with € = 0.01 and h = 1/10. (c¢) h =1/25. (d) h = 1/100.

Figure 2.6(a) shows how solutions to equation (2.65) look for various values of € in the case a = 1,
B =3, and f(z) = —1. In this case the exact solution is

e’/c—1
uwz)=a+z+(B-a-1) (T) (2.67)
elt/e —1
Note that as € — 0 the solution tends towards a discontinuous function that jumps to the value § at
the last possible moment. This region of rapid transition is called the boundary layer and it can be
shown that for this problem the width of this layer is O(e) as € = 0.

The equation (2.64) with 0 < e <« 1 is called a singularly perturbed equation. It is a small perturba-
tion of the equation (2.66), but this small perturbation changes the character of the equation completely
(from a first order equation to a second order equation). Typically any differential equation having a
small parameter multiplying the highest order derivative will give a singular perturbation problem.

By contrast, going from the pure diffusion equation ku,, = f to an advection diffusion equation
Klugy — au, = f for very small a is a regular perturbation. Both of these equations are second order
differential equations requiring the same number of boundary conditions. The solution of the perturbed
equation looks nearly identical with the solution of the unperturbed equation for small a, and the
difference in solutions is O(a) as a — 0.

Singular perturbation problems cause numerical difficulties because the solution changes rapidly
over a very small interval in space. In this region derivatives of u(z) are large, giving rise to large
errors in our finite difference approximations. Recall that the error in our approximation to u'(x) is
proportional to h?u""(x), for example. If A is not small enough, then the local truncation error will be
very large in the boundary layer. Moreover, even if the truncation error is large only in the boundary
layer, the resulting global error may be large everywhere. (Recall that the global error E is obtained
from the truncation error 7 by solving a linear system AE = —7, which means that each element of
E depends on all elements of 7 since A™! is a dense matrix.) This is clearly seen in Figure 2.6(b)
where the numerical solution with A = 1/10 is plotted. Errors are large even in regions where the exact
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solution is nearly linear and u'"" = 0.

On finer grids the solution looks better, see Figure 2.6(c) and (d), and as h — 0 the method does
exhibit second order accurate convergence. But it is necessary to have a sufficiently fine grid before
reasonable results are obtained.

2.16.1 Interior layers

The above example has a boundary layer, a region of rapid transition at one boundary. Other problems
may have interior layers instead. In this case the solution is smooth except for some thin region interior
to the interval where a rapid transition occurs. Such problems can be even more difficult to solve since
we often don’t know to begin with where the interior layer will be. Perturbation theory can often be
used to analyse singular perturbation problems and predict where the layers will occur, how wide they
will be (as a function of the small parameter €) and how the solution behaves. The use of perturbation
theory to obtain good approximations to problems of this type is a central theme of classical applied
mathematics. (See the texts mentioned at the beginning of Section 2.16 for examples.)

These analytic techniques can often be used to good advantage along with numerical methods, for
example to obtain a good initial guess for Newton’s method, or to choose an appropriate nonuniform
grid as discussed in the next section. In some cases it is possible to develop special numerical methods
that have the correct singular behavior built into the approximation in such a way that far better
accuracy is achieved than with a naive numerical method.

2.17 Nonuniform grids and adaptive refinement

From Figure 2.6 it is clear that we need to choose our grid fine enough that several points are within
the boundary layer in order to obtain a reasonable solution. If we wanted high accuracy within the
boundary layer we would have to choose a much finer grid than shown in this Figure. With a uniform
grid this means using a very large number of grid points, the vast majority of which are in the region
where the solution is very smooth and could be represented well with far fewer points. This waste
of effort may be tolerable for simple one-dimensional problems, but can easily be intolerable for more
complicated problems, particularly in more than one dimension.

Instead it is preferable to use a nonuniform grid for such calculations, with grid points clustered in
regions where they are most needed. This requires developing formulas that are sufficiently accurate
on nonuniform grids as in Homework #1. There we saw that a 4-point stencil could be used to obtain
second order accuracy for the second derivative operator. Using this for a linear problem would give a
banded matrix with 4 nonzero diagonals. A little extra care is needed at the boundaries.

Finite element methods are often eaiser to define on nonuniform grids than finite difference methods.
See Section 4.3.

One way to specify nonuniform grid points is to start with a uniform grid in some artificial coordinate
&, which we will denote by & =ih fori =0, 1, ..., m+ 1 where h = 1/(m + 1), and then use some
appropriate grid mapping function X (§) to define the physical grid points x; = X (&;). This is illustrated
in Figure 2.7, where £ is plotted on the vertical axis and z is on the horizontal axis. The curve plotted
represents a function X (), though with this choice of axes it is more properly the graph of the inverse
function £ = X !(z). The horizontal and vertical lines indicate how the uniform grid points on the
¢ axis are mapped to nonuniform points in x. If the problem is posed on the interval [a,b], then the
function X () should be monotonically increasing and satisfy X (0) = a and X (1) = b.

Note that grid points are clustered in regions where the curve is steepest, which means that X (¢)
varies slowly with £, and spread apart in regions where X (§) varies rapidly with &.

Readers who wish to use methods on nonuniform grids are strongly encouraged to investigate some
of the software which is freely available. There are good packaged routines which will automatically
choose an appropriate grid for a given problem (perhaps with some initial guidance) and take care of all
the details of discretizing on this grid. The coLsYS collocation package is one such software package,
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Figure 2.7: Grid mapping from a uniform grid in 0 < £ < 1 (vertical axis) to the nonuniform grid in

physical z-space shown on the horizontal axis. This particular mapping clusters grid points near the
endpoints z = 0 and z = 2 and also near the center.

available from NETLIB. Strategies for adaptive mesh selection (i.e., choosing a grid that adapts to the
nature of the solution) are discussed, for example, in [AMR8S].
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Chapter 3

Elliptic Equations

In more than one space dimension, the steady-state equations discussed in Chapter 2 generalize naturally
to elliptic partial differential equations. In two space dimension a constant-coefficient elliptic equation
has the form

A1 Ugz + GoUzy + A3Uyy + AU, + asuy + asu = f (3.1)
where the coefficients a1, a2, as satisfy
a3 — 4aaz < 0. (3.2)

This equation must be satisfied for all (z,y) in some region of the plane 2, together with some boundary
conditions on 92, the boundary of 2. For example we may have Dirichlet boundary conditions in which
case u(z,y) is given at all points (z,y) € 012. If the ellipticity condition (3.2) is satisfied then this gives
a well-posed problem. If the coefficients vary with = and y then this condition must be satisfied at each
point in €.

3.1 Steady-state heat conduction

Equations of elliptic character often arise as steady-state equations in some region of space, associated
with some time-dependent physical problem. For example, the diffusion or heat conduction equation in
two space dimensions takes the form

up = (Kug)s + (Kuy)y + 9 (3.3)

where k(z,y) > 0 is a diffusion or heat conduction coefficient that may vary with z and y, and ¥ (z,y,t)
is a source term. The solution u(z,y,t) will generally vary with time as well as space. We also need
initial conditions u(z,y,0) in © and boundary conditions at each point in time at every point on the
boundary of 2. If the boundary conditions and source terms are independent of time then we expect a
steady state to exist, which we can find by solving the elliptic equation

(Kug)e + (Kuy)y = f (3.4)

where again we set f(z,y) = —¢(z,y), together with the boundary conditions. Note that (3.2) is
satisfied at each point provided k > 0 everywhere.

We first consider the simplest case where k = 1. Variable coefficients will be considered in Section ?7.
We then have

Uggy + Uyy = f (35)

35
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Figure 3.1: Portion of the computational grid for a two-dimensional elliptic equation. (a) The 5-point
stencil for the Laplacian about the point (i,7) is also indicated. (b) The 9-point stencil is indicated,
which is discussed in Section 3.5.

which is called the Poisson problem. In the special case f = 0 this reduces to Laplace’s equation,
Ugg + Uyy = 0. (3.6)

In one space dimension the corresponding equation u' () = 0 is trivial: the solution is a linear function
connecting the two boundary values. In two dimensions even this simple equation in nontrivial to
solve, since boundary values can now be specified at every point along the curve defining the boundary.
Solutions to Laplace’s equation are called harmonic functions. You may recall from complex analysis
that if g(z) is any complex analytic function of z = z + iy, then the real and imaginary parts of this
function are harmonic. For example, g(z) = 2% = (2% — y?) + 2izy is analytic and the functions z? — y?
and 2zy are both harmonic.
The operator V? defined by

2
VU = Uy + Uyy

is called the Laplacian. The notation V2 comes from the fact that, more generally,
(Kug)e + ("my)y =V (kVu)

where Vu is the gradient of u,

Uy
Vu = { ", ] (3.7)
and V- is the divergence operator,
V-[z]zuw—l—vy. (3.8)

The symbol A is also often used for the Laplacian, but would lead to confusion in numerical work where
Az and Ay will be used for grid spacing.

3.2 The five-point stencil for the Laplacian

To discuss discretizations, first consider the Poisson problem (3.5) on the unit square 0 < z < 1,
0 <y <1 and suppose we have Dirichlet boundary conditions. We will use a uniform Cartesian grid
consisting of grid points (x;,y;) where z; = iAz and y; = jAy. A section of such a grid is shown in
Figure 3.1.
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Let u;; represent an approximation to u(z;,y;). In order to discretize (3.5) we replace both the z-
and y-derivatives with centered finite differences, which gives

1 1

W(um,j = 2uij + Uiy15) + W(um‘fl = 2uij + uijy1) = fij. (3.9)
For simplicity of notation we will consider the special case where Az = Ay = h, though it is easy to
handle the general case. We can then rewrite (3.9) as

75 (i1 + wig1j + i1+ i — duig) = fij. (3.10)

B2
This finite difference scheme can be represented by the 5-point stencil shown in Figure 3.1. We have
both an unknown w;; and an equation of the form (3.10) at each of m? grid points fori =1, 2, ..., m
and j =1, 2, ..., m, where h = 1/(m + 1) as in one dimension. We thus have a linear system of
m? unknowns. The difference equations at points near the boundary will of course involve the known
boundary values, just as in the one-dimensional case, that will be moved to the right-hand side.

If we collect all of these equations together into a matrix equation, we will have an m? x m? matrix
which is very sparse, i.e., most of the elements are zero. Since each equation involves at most 5 unknowns
(less near the boundary), each row the matrix has at most 5 nonzeros and at least m? — 5 elements that
are zero. This is analogous to the tridiagonal matrix (2.9) seen in the one-dimensional case, in which
each row has at most 3 nonzeros.

Unfortunately, in two space dimensions the structure of the matrix is not as simple as in one
dimension, and in particular the nonzeros will not all be as nicely clustered near the main diagonal.
The exact structure of the matrix depends on the order in which we order the unknowns and write
down the equations, as we will see below, but no ordering is ideal.

Note that in general we are always free to change the order of the equations in a linear system without
changing the solution. Modifying the order corresponds to permuting the rows of the matrix and right-
hand side. We are also free to change the ordering of the unknowns in the vector of unknowns, which
corresponds to permuting the columns of the matrix. As an example, consider the one-dimensional
difference equations given by (2.9). Suppose we reordered the unknowns by listing first the unknowns
at odd numbered grid points and then the unknowns at even numbered grid points, so that U =
[Uy, Us, Us, ...,Us, Uy, ...]T. If we also reorder the equations in the same way, i.e., we write down
first the difference equation centered at Uy, then at Us, Us, etc., then we would obtain the following
system:

( -2 1 17 U 7 ( f(x1) —a/h? T
-2 1 1 Us f(w3)
-2 1 1 U5 f(.’l?5)
1 r 1| | U F )
h2 1 1 -2 U. f(a2) .
11 =) Uy Fa) (3.11)
1 -2 Us f(z)
L 1. -2 | U'm L f(xm) _ ﬂ/h2 i

This linear system has the same solution as (2.9) modulo the reordering of unknowns, but looks very
different. For this one-dimensional problem there is no point in reordering things this way, and the
natural ordering [U;, U,, Us, ...]% clearly gives the optimal matrix structure for the purpose of
applying Gaussian elimination. By ordering the unknowns so that those which occur in the same
equation are close to one another in the vector, we keep the nonzeros in the matrix clustered near the
diagonal.
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Figure 3.2: (a) The natural rowwise order of unknowns and equations on a 4 x 4 grid. (b) The red-black
ordering.

Returning to the two-dimensional problem, it should be clear that there is no way to order the un-
knowns so that all nonzeros are clustered adjacent to the diagonal. About the best we can do is to use the
natural rowwise ordering, where we take the unknowns along the bottom row, w11, w21, us1, --., U1,
followed by the unknowns in the second row, u1a, w2, ... , U2, and so on, as illustrated in Figure 3.2(a).
This gives a matrix equation where A has the form

T I
I T 1
I T I

I T

which is an m x m block tridiagonal matriz in which each block 7" or I is itself an m X m matrix,

and I is the m x m identity matrix. While this has a nice structure, the 1 values in the I matrices
are separated from the diagonal by m — 1 zeros, since these coefficients correspond to grid points lying
above or below the central point in the stencil and hence are in the next or previous row of unknowns.

Another possibility, which has some advantages in the context of certain iterative methods (see
Section ?7?), is to use the red-black ordering (or checkerboard ordering) shown in Figure 3.2. This is
the two-dimensional analog of the odd-even ordering that leads to the matrix (3.11) in one dimension.
This ordering is significant because all 4 neighbors of a red grid point are black points, and vice versa,
and leads to a matrix equation with the structure

D H Ured .
[ HT D } [ Ublack } B (3:12)

where D = —41 is a diagonal matrix of dimension m? /2.

Exercise 3.1 What is the matriz H in (3.12) for the grid shown in Figure 3.2¢
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3.3 Solving the linear system

In Chapter 5 we will consider various approaches to solving these linear systems in more detail. Here
we will only discuss some of the main issues.

There are two fundamentally different approaches that could be used for solving these linear systems.
A direct method such as Gaussian elimination produces an exact solution (or at least would in exact
arithmetic) in a finite number of operations. An iterative method starts with an initial guess for the
solution and attempts to improve it through some iterative procedure, halting after a sufficiently good
approximation has been obtained. For problems with large sparse matrices, iterative methods are often
preferable for various reasons described below.

For certain special problems very fast direct methods can be used, which are much better than
standard Gaussian elimination. This is discussed briefly in Section 3.3.2.

3.3.1 GGaussian elimination

This is the best known direct method for solving a linear system Au = F. The matrix A is reduced to
upper triangular form by taking linear combinations of the rows to introduce zeros below the diagonal.
This can be viewed as giving a factorization A = LU of the matrix into a product of an upper and a
lower triangular matrix. Forward and back substitution are then used to solve the triangular systems
Le = F and then Uu = ¢. (See, e.g., [GL89] or [?]).

It is easy to compute that for a general N X N dense matrix (one with few elements equal to zero),
performing Gaussian elimination requires O(IN?) operations. (There are N (N —1)/2 = O(N?) elements
below the diagonal to eliminate, and eliminating each one requires O(IN) operations to take a linear
combination of the rows.)

Applying a general Gaussian elimination program blindly to the matrices we are now dealing with
would be disasterous, or at best extremely wasteful of computer resources. Suppose we are solving the
Poisson problem on a 100 x 100 grid for example. Then N = m? = 10* and N? = 10'2. On a reasonably
fast workstation (ca. 1996) which can do on the order of 107 floating point operations per second (10
megaflops), this would take on the order of 10° seconds, which is roughly 28 minutes. If we went up to
a 1000 x 1000 grid (a million by million matrix) this would increase by a factor of 10% to roughly 3000
years. Things are worse in three dimensions. Solving the Poisson problem on a 100 x 100 x 100 gives
the same matrix dimension N = 10° as the 1000 x 1000 grid in two dimensions. More sophisticated
methods can solve even these larger problems in a reasonable amount of time, and problems with a
million unknowns are not unusual in applications.

Moreover, even if speed were not an issue, memory would be. Storing the full matrix A in order to
modify the elements and produce L and U would require N2 memory locations. In 8-byte arithmetic
this requires 8N? bytes. For the larger problems mentioned above, this would be 8 x 10'2 bytes, or
8000 gigabytes. One advangtage of iterative methods is that they do not store the matrix at all, and
at most need to store the nonzero elements.

Of course with Gaussian elimination it would be foolish to store all the elements of a sparse matrix,
since the vast majority are zero, or to apply the procedure blindly without taking advantage of the fact
that so many elements are already zero and hence do not need to be eliminated.

As an extreme example, consider the one-dimensional case where we have a tridiagonal matrix as
n (2.9). Applying Gaussian eliminataion requires only eliminating the nonzeros along the subdiagonal,
only N — 1 values instead of N(NN — 1)/2. Moreover, when we take linear combinations of rows in
the course of eliminating these valuse, in most columns we will be taking linear combinations of zeros,
producing zero again. If we do not do pivoting, then only the diagonal elements are modified. Even with
partial pivoting, at most we will introduce one extra superdiagonal of nonzeros in the upper triangular
U that were not present in A. As a result, it is easy to see that applying Gaussian elimination to an
m x m tridiagonal system requires only O(m) operations, not O(m?), and that the storage required is
O(m) rather than O(m?).

Note that this is the best we could hope for in one dimension, at least in terms of the order of
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magnitude. There are m unknowns and even if we had exact formulas for these values, it would require
O(m) work to evaluate them and O(m) storage to save them.

In two space dimensions we can also take advantage of the sparsity and structure of the matrix to
greatly reduce the storage and work required with Gaussian elimination, though not to the minimum
that one might hope to attain. On an m x m grid there are N = m? unknowns, so the best one could
hope for is an algorithm that computes the solution in O(N) = O(m?) work using O(m?) storage.
Unfortunately this cannot be achieved with a direct method.

One approach that is better than working with the full matrix is to observe that the A is a band
matrix with bandwidth m both above and below the diagonal. Since a general N x N banded matrix
with ¢ nonzero bands above the diagonal and b below the diagonal can be factored in O(Nab) operations,
this results in an operation count of O(m*).

A more sophisticated approach that takes more advantage of the special structure (and the fact that
there are already many zeros within the bandwidth) is the nested dissection algorithm|[GL81]. This
algorithm requires O(m?) operations. It turns out this is the best that can be achieved with a direct
method based on Gaussian elimination. George has proved (see [GL81]) that any elimination method
for solving this problem requires at least O(m?) operations.

3.3.2 Fast Poisson solvers

For this very special system of equations there are other techniques that can be used to solve the system
quickly. These are generally called fast Poisson solvers (recall we are looking at the Poisson problem
(3.10) with constant coefficients on a rectangular domain). One standard technique uses fast Fourier
transforms to solve the system in O(m? logm) work, which is nearly optimal since there are m? grid
values to be determined.

To explain the main idea of this approach, we consider only the one-dimensional case, where the
Poisson problem reduces to u”(z) = f(z) on the interval [0, 1], and the centered 3-point discretization
gives the matrix equation (2.9) (for the case of Dirichlet boundary conditions). In one dimension this
tridiagonal system can be solved in O(m) operations and there is no need for a “fast solver”, but the
idea is easiest to illustrate in this case.

In Section 2.10 we determined the eigenvalues and eigenvectors of the matrix A. Based on these we
can write down the Jordan Canonical Form of A:

A=RAR™! (3.13)

where R is the matrix of right eigenvectors (the p’th column of R is the vector u? from (2.24)) and A
is a diagonal marix with the eigenvalues on the diagonal. So we have

sin(rzy)  sin(2rzy) - sin(mwz)
sin(rzy) sin(2rze) -+ sin(mmzs)

R= : . . (3.14)
sin(rey,) sin(2rzy,) - sin(mrzy)

and

Z(cos(2mh) — 1) 3.15)
7= (cos(mmh) — 1)
Since A~! = RA"'R!, one approach to solving the linear system Au = F is to use this to obtain
u=A""F=RA'R'F.

There are at least 4 obvious objections to using this approach to solve a general linear system:
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e In general it is not easy to determine the eigenvalues and eigenvectors of a given matrix. Doing
so computationally is generally much more expensive than solving the original system by other
approaches.

e Even if we know R and A, as we do here, we don’t in general know R~!. Computing an inverse
matrix is much more work than solving a single linear system. Of course all we really need here
is R71F = F, say, which can be found by solving a single system RE = F, but this system may
be no easier to solve than the original system Au = F (and perhaps much more expensive since
R is typically dense even if A is sparse).

e Even if we know R and R~! explicitly, storing them typically requires O(N?) storage for an N x N
system since these are dense matrices. We probably want to avoid this if A is sparse.

e It also requires O(N?) work to multiply an N x N dense matrix by an N-vector. In two dimensions,
where N = m?, this is no better than using Gaussian elimination on the banded matrix A. (And
in one dimension the O(m?) work required would be much worse than the O(m) work needed for
the tridiagonal system.)

So why would we ever consider such a method? In general we would not, but for the very special
case of a Poisson problem on a simple region, these objections all vanish thanks to the Fast Fourier
Transform.

We do know A and R for our simple problem, and moreover we know R~!, since we can compute

using trig identities that
R = (mTH> I

R~' = 2hR.

and so

(R is symmetric, and, except for the scaling, an orthogonal matrix.)

Although R is a dense matrix, it contains only m distinct values (after applying trig identities) and
we do not need to compute or store all of the elements. Moreover, and most importantly, multiplying
a vector by R or R~ does not require O(m?) operations, but can be done in O(m logm) operations if
m is a product of small prime factors. Ideally we would choose m to be a factor of 2, say m = 2%, The
trick is then to observe (It’s not obvious!) that R can be written as a product of k matrices,

R=RiRy---Ry

where each R; is very sparse so that multiplying a vector by R; requires only O(m) operations. Applying
each matrix in turn to a vector gives the desired product in O(km) = O(mlogm) operations.

This algorithm is a special case of the Fast Fourier Transform, or FFT, since multiplying a vector
by R corresponds to taking a sine transform of the data. See [Loa97] for a brief introduction to the
recursive structure of the FFT.

In one space dimension there is still no advantage to this procedure over solving the tridiagonal
system directly, which only requires O(m) operations. However, this approach carries over directly to
2 or 3 space dimensions, with operation counts of O(m?logm) and O(m? logm) respectively, which is
asymptotically nearly optimal since the grids have m? and m? points.

To solve the system Au = F' using this technique (back in one dimension, now), we would first use
the FFT algorithm to compute

F = R 'F = 2hRF, (3.16)

then divide each element of F' by the corresponding eigenvalue from A,

2

a; = Fj/ (%(cos(jwh) —1)) for j=1,1,..., m, (3.17)
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so that &4 = A~'R~!F. Finally we do another FFT to compute
u = Ri. (3.18)

Unfortunately these techniques generally do not extend to other systems of equations, such as those
arising in a variable-coefficient problem. The technique depends on knowing the eigen-decomposition of
the matrix A and on having a fast algorithm for multiplying the dense matrix R times a vector. For a
variable-coefficient problem, we won’t in general know R and R~! (unless we compute them numerically,
which takes much more work than solving the original linear system). Even if we did know them, we
wouldn’t generally have a fast algorithm to apply them to a vector.

The special case of a constant-coefficient Poisson problem in a rectangular region arises sufficiently
often in applications that fast Poisson solvers are often useful, however. Software for this problem is
available in FISHPACK from netlib. For a review of fast Poisson solvers, see [Swa84].

3.3.3 Iterative methods

Except when the matrix has very special structure and fast direct methods of the type discussed in
the previous section apply, iterative methods are usually the method of choice for large sparse linear
systems. In this section two classical iterative methods, Jacobi and Gauss-Seidel, are introduced to
illustrate the main issues. It should be stressed at the beginning that these are poor methods in general
which converge very slowly, but they have the virtue of being simple to explain. Much more efficient
methods are discussed in Chapter 5.

We again consider the Poisson problem where we have the system of equations (3.10). We can
rewrite this equation as

h2
wij = 7 (Wim1j + U1+ ij-1 +ui) = fig (3.19)

N

In particular, note that for Laplace’s equation (where f;; = 0) this simply states that the value of u at
each grid point should be the average of its four neighbors. This is the discrete analog of the well-known
fact that a harmonic function has the following property: The value at any point (x,y) is equal to the
average value around a closed curve containing the point, in the limit as the curve shrinks to the point.
Physically this also makes sense if we think of the heat equation. Unless the temperature at this point
is equal to the average of the temperature at neighboring points, there will be a net flow of heat towards
or away from this point.

The equation (3.19) suggests the following iterative method to produce a new estimate ul*t1] from
a current guess ulf:

1 h?
Uy;ﬂ] = Z(ugk—]l,j + uy—ﬂl,j + “yf]]‘—l + “E{CJ]'H) - Zfz’j- (3.20)

This is the Jacobi iteration for the Poisson problem, and it can be shown that for this particular problem
it converges from any initial guess ul’ (though very slowly).

Here is a short section of MATLAB code that implements the main part of this iteration:

for iter=0:maxiter
for j=2: (m+1)
for i=2:(m+1)
unew(i,j) = 0.25%(u(i-1,j) + u(i+1,j) + u(i,j-1) + u(i,j+1) - h"2 * £(i,j));
end
end
u = unew;
end
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where it is assumed that u initially contains the guess ul’ and that boundary data is stored into
u(l,:), u(@+2,:), u(:,1), and u(:,m+2). The indexing is off by one from what one might expect
since MATLAB begins arrays with index 1, not O.

Note that one might be tempted to dispense with the variable unew and replace the above code by

for iter=0:maxiter
for j=2:(m+1)
for i=2:(m+1)
u(i,j) = 0.25%(u(i-1,j) + u(i+1,j) + u(i,j-1) + u(i,j+1) - h"2 * £(i,j));
end
end
end

This would not give the same results, however. In the correct code for Jacobi we compute new values
of u based entirely on old data from the previous iteration, as required from (3.20). In the second code
we have already updated u(i-1,j) and u(i,j-1) before we update u(i,j), and these new values will
be used instead of the old ones. The latter code thus corresponds to the method

[k+1] h?

k k
o ij—1 1 UE’,J]'H) - Zfij- (3.21)

k+1] _ 1
w = g\,

(K]
ij 4(U tui, ; tu
This is in fact what is known as the Gauss-Seidel method, and it would be a lucky coding error since
this method generally converges about twice as fast as Jacobi’s method (see Chapter 5).
Convergence of these methods will be discussed in Chapter 5. For now we simply note some features

of these iterative methods:

e The matrix A is never stored. In fact, for this simple constant coefficient problem, we don’t even
store all the 5m? nonzeros which all have the value 1/h? or —4/h®. The values 0.25 and h? in
the code are the only values that are “stored”. (For a variable coefficient problem where the
coefficients are different at each point, we would in general have to store them all.)

e Hence the storage is optimal — essentially only the m? solution values are stored in the Gauss-

Seidel method. The above code for Jacobi uses 2m? since gnew is stored as well as g, but one
could eliminate most of this with more careful coding.

e Each iteration requires O(m?) work. The total work required will depend on how many iterations
are required to reach the desired level of accuracy. In Chapter 5 we will see that with these
particular methods we require O(m? logm) iterations to reach a level of accuracy consistent with
the expected global error in the solution (as h — 0 we should require more accuracy in the solution
to the linear system). Combining this with the work per iteration gives a total operation count
of O(m*logm). This looks worse than Gaussian elimination with a banded solver, though since
logm grows so slowly with m it is not clear which is really more expensive for a realistic size
matrix. (And the iterative method definitely saves on storage.)

Other iterative methods also typically require O(m?) work per iteration, but may converge much
faster and hence result in less overall work. The ideal would be to converge in a number of iterations
that is independent of h. Multigrid methods can achieve this, not only for Poisson’s problem but also
for many other elliptic equations.

3.4 Accuracy and stability

The discretization of the two-dimensional Poisson problem can be analyzed using exactly the same
approach as we used for the one-dimensional boundary value problem. The local truncation error 7;;
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at the (4,7) grid point is defined in the obvious way,

1
Tij = ﬁ(u(wiflayj) + (@i, y;) +ulmi, yi1) + (@i, yie) — dulzs, y;) — f(2i,95),

and by splitting this into the second order difference in the z- and y-directions it is clear from previous
results that

1
Ehz(uzwm + Uyyyy) + O(h4)-

Tij =
For this linear system of equations the global error E;; = u;; — u(z;,y;) then solves the linear system
AREh — _sh

just as in one dimension. The method will be globally second order accurate in some norm provided
that it is stable, i.e., that ||(A")~!|| is uniformly bounded as h — 0.

In the 2-norm this is again easy to check, for this simple problem, since we can explicitly compute
the spectral radius of the matrix, as we did in one dimension in Section 2.10. The eigenvalues and
eigenvectors of A can now be indexed by 2 parameters p and k corresponding to wavenumbers in the x

and y directions, for p, k=1, 2, ..., m. The (p, k) eigenvector uP* has the m? elements
uf]?k = sin(pmih) sin(kmjh).

The corresponding eigenvalue is
P 2 ((cos(pmh) — 1) + (cos(kmh) — 1))
= cos(p cos .

The eigenvalues are strictly negative (A is negative definite) and the one closest to the origin is
AbE = 272 + O(h?).
The spectral radius of (A")~!, which is also the 2-norm, is thus
p((AMH™H = 1/AM = —1/2q2

The method is hence stable in the 2-norm.

While we are at it, let’s also compute the condition number of the matrix A”, since it turns out that
this is a critical quantity in determining how rapidly certain iterative methods converge. Recall that
the condition number is defined by

cond(A) = [|All2[|A™l2-

We've just seen that ||(A4%) || & —1/272 for small h, and the norm of A is given by its spectral radius.
The largest eigenvalue of A (in magnitude) is

o e 4
m/2m/2
N/2m/2 ~33
and so
2 2

The fact that the matrix becomes more ill-conditioned as we refine the grid is responsible for the
slow-down of iterative methods such as Jacobi or Gauss-Seidel.



R. J. LeVeque — AMath 585-6 Notes 45

3.5 The nine-point Laplacian

Above we have used the 5-point Laplacian which we will denote by VZu;;, where this denotes the
left-hand side of equation (3.10). Another possible approximation is the 9-point Laplacian
1

Viui; = 6?[41%—1,3' i+ duggog +Aug e w11+ Ui Wi+ Wi — 20u5]
(3.23)

as indicated in Figure 3.1. If we apply this to the true solution and expand in Taylor series we find that

2 _ 2 1h2 O h4
Viu(zi,yj) = Viu+ 3 (Ugzas + 2Uzayy + Uyyyy) + O(R®).

At first glance this discretization looks no better than the 5-point discretization since the error is still
O(h?). However, the additional terms lead to a very nice form for the dominant error term, since

Usaea + Qaayy + Uyyyy = V(V0).

This is the Laplacian of the Laplacian of w, otherwise known as the biharmonic. If we are solving
V2u = f, then we have
Usaea + eayy + Uyyyy = V.

Hence we can compute the dominant term in the truncation error easily from the known function f
without knowing the true solution u to the problem.

In particular, if we are solving Laplace’s equation, where f = 0, or more generally if f is a harmonic
function, then this term in the local truncation error vanishes and the 9-point Laplacian would give a
fourth order accurate discretization of the differential equation.

More generally, we can obtain a fourth-order accurate method of the form

Vguij = Fij (324)
for arbitary smooth functions f(z,y) by defining

h2
Fij = f(xi,y;5) — ?VQf(ﬂfz’;yj)- (3.25)

We can view this as deliberately introducing an O(h?) error into the right hand side of the equation
that is chosen to cancel the O(h?) part of the local truncation error. Taylor series expansion easily
shows that the local truncation error of the method (3.24) is now O(h*).

If we only have data f;; = f(x;,y;) at the grid points rather than the function f (but we know that
the underlying function is sufficiently smooth), then we can still achieve fourth order accuracy by using

h? 9
Fij = fij — 7V5fij

instead of (3.25).

This is a trick that can often be used in developing numerical methods — introducing an “error”
into the equations that is carefully chosen to cancel some other error.

Note that the same trick wouldn’t work with the 5-point Laplacian, or at least not as directly. The
form of the truncation error in this method depends on %ywse + Uyyyy. There is no way to compute this
directly from the original equation, without knowing u. The extra points in the 9-point stencil convert
this into the Laplacian of f, which can be computed if f is sufficiently smooth.

On the other hand a two-pass approach could be used for with the 5-point stencil, in which we first
estimate u by solving with the standard 5-point scheme to get a second order accurate estimate of w.
We then use this estimate of u to approximate Usyzs + Uyyyy and then solve a second time with a right
hand side that is modified to eliminate the dominant term of the local truncation error. This would be
more complicated for this particular problem, but this idea can be used much more generally than the
above trick which depends on the special form of the Laplacian. This general approach is called the
method of deferred corrections. For more details see, e.g., [Kel76], [AMRSS].
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Chapter 4

Function Space Methods

Finite difference methods determine an approximate solution only at discrete grid points. A “function
space method” on the other hand, determines a function U(xz) on the entire domain that approximates
the true solution u(x). In order to reduce the original differential equation to a system of algebraic
equations that can be solved for a finite number of unknonws, we typically search for the approximation
U(z) from a finite-dimensional function space that is spanned by a fixed set of basis functions ¢;(x),
for j =1, 2, ..., N that are specified a priori. The function U(z) then has the form

N
Ux) =Y c;¢;(a).
j=1

If the functions ¢;(z) are a basis for the space of all such functions, then they must be linearly inde-
pendent. This means that the only way we can get the zero function from such a linear combination is
if ¢; = 0 for all j. It then follows that any function in the span of these functions has a unique set of
coeflicients c;.

In order to determine the coefficients ¢; that yield a good approximation to u(z), we need to derive
a set of IV equations to be solved for these coefficients. There are many ways in which this can be done.
One example was seen in Section 4.2, where ¢;(z) = sin(jmx) were used as basis functions.

4.1 Collocation

One approach to determining the function U(z) is to require that this function satisfy the differential
equation at some finite set of collocation points. Of course we would really like to have U(z) satisfy
the differential equation at all points z, in which case it would be the exact solution, but this won’t
be possible generally unless the exact solution happens to lie in the finite-dimensional function space
spanned by the ¢;. Since there are N free parameters and also two boundary conditions that need to
be satisfied (for our second order model problem), we can hope to satisfy the differential equation at
some N — 2 points, however.

Example 4.2. Consider our standard model problem " (z) = f(x) with Dirichlet boundary condi-
tions. Requiring that the boundary conditions be satisfied gives the two equations

N
Z Cj¢j (0) =Q,
=t (4.1)

N
> (1) = 6.
j=1

47
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We can then require in addition that the differential equation be satisfied at some points &, ..., y_o:
N
> eidi (&) = f(&) (42)
j=1

fori =1, 2, ..., N —2. The equations (4.1) and (4.2) together give N equations for the N unknowns

c;j- Note that this may be a dense system of equations unless we are careful to choose our basis functions
so that many of these coefficients are zero. A local basis such as a B-spline basis for spline functions is
often used in practice. (An example of a local basis for piecewise linear functions is given in Section 4.3,
but it is not a basis that is suitable for collocation on a second order differential equation.)

Another approach is to choose a set of functions and collocation points in such a way that “fast
transform” methods can be used to solve the dense linear system, as in the fast Poisson solvers discussed
in Section 3.3.2. This suggests using Fourier series to represent the solution. This turns out to be a
very good idea, not only because the fast Fourier transform can be used to solve the resulting system,
but also because smooth functions can be represented very accurately with relatively few terms of a
Fourier series. Hence the order of accuracy of such a method can be very high, see Section 4.2.2.

4.2 Spectral methods

In Section 3.3.2 we looked at a method based on the FFT for solving the linear system Au = F
that arises from the finite difference discretization studied in Chapter 2. Here we will study an entirely
different approach to solving the original differential equation u"(z) = f(z), approximating the solution
by a Fourier series rather than by a discrete set of points. But the techniques are closely related (at
least for this simple problem) as noted at the end of this section.

Here we will consider the simplest possible problem to illustrate the main ideas. The problem
we consider is again u'(z) = f(z) on [0,1], and we will also assume that homogeneous Dirichlet
boundary conditions u(0) = u(1) = 0 are specified, and also that f(z) is a smooth function satisfying
f(0) = f(1) = 0. These conditions are not necessary in general, but in this special case we can easily
illustrate the so-called spectral method using the Fourier sine transform introduced in Section 3.3.2. The
name comes from the fact that the set of eigenvalues of a matrix or operator is called its spectrum, and
these methods are heavily based on the eigenstructure of the problem (at least for this simple problem).

Note that for this problem the functions sin(jrz) satisfy the boundary conditions and differentiating
twice gives a scalar multiple —(jm)? times the original function. Hence these are indeed eigenfunctions
of the operator 8*/0z%. This is the reason using a sine-series expansion of the solution is valuable.
Recall also that discretized versions of these functions are eigenvectors of the tridiagonal matrix arising
from the standard finite-difference formulation, which is why the FFT can be used in the fast Poisson
solver described in Section 3.3.2.

Spectral methods are exceeding powerful tools for solving a wide class of differential equations,
particularly when the solution we seek is a smooth function (so that Fourier series give a good represen-
tation) and the domain and boundary conditions are reasonably simple. This is not meant as a general
overview of spectral methods; only as a brief introduction to the main idea. Better introductions can
be found in many sources, e.g., [CHQZ88], [For96], [GO77].

The function f(z) can be expressed in a Fourier series as

flw) = fisin(jme)
j=1
where

fj = 2/0 f(z)sin(jra) de. (4.3)
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Similarly, the unknown function u(z) can be expanded as
o
u(z) = Zﬁj sin(jmz). (4.4)
j=1
Differentiating this series term by term (assuming this is valid, which it is for smooth functions) gives

u'(z) =Y —(jm)*i, sin(jra)
j=1

and equating this with the series for f(xz) shows that

N 1 2

Uj = G2 fi (4.5)
We have just “solved” the differential equation and determined the exact solution, as a Fourier series.
Note that this works only because sin(jrz) is an eigenfunction of the differential operator. For a different
differential equation, one would have to use the appropriate eigenfunctions in the series representation
in place of the sine functions to achieve the same success.

If f(x) is sufficiently simple, we may be able to explicitly calculate the integrals in (4.3) and then the
resulting infinite series in (4.4). (Though we are more likely to be able to integrate f twice to compute
the exact solution for this trivial equation!) More generally we will not be able to compute the integrals
or infinite series exactly, but we can use this approach as a basis for an approximate numerical method.
We can approximate the series (4.4) by a truncated finite series,

U(z) = Ujsin(jra) (4.6)
j=1

and approximate U. ; using (4.5) where fj is obtained by approximating the integral in (4.3).
For example, we could approximate f; by

Fy =2h) " sin(jmz;) f(x:) (4.7)

i=1
where ; = ih with h = 1/(m + 1). If we then calculate

N 1 .

Uj; = )2 F; (4.8)
we can use (4.6) to compute an approximate value U(z) ~ u(z) at any point . In particular, we could
compute U(x;) for each of the grid points x; used in (4.7) to obtain an approximation to u(z) on a
discrete grid, similar to what is produced with a finite difference method. Denote the resulting vector of
grid values by U = [U(z1), U(za), ..., U(zm)]t. What has just been described is the spectral method
for computing the approximate solution U.

Note that this is very closely related to what was done in the previous section. In fact, the sum in
(4.7) can be written in vector form as

F = 2hRF

exactly as in (3.16), where F' = [f(z1), f(xa), .., f(zm)]T (just as it is in (3.16) in the case of
homogeneous boundary conditions). Also, computing the vector U by evaluating (4.6) at each grid
point is exactly the operation .

U=RU

as in (3.18). In practice each of these operations would be done with the FFT.



50 Function Space Methods

The only difference between the spectral method and the “fast Poisson solver” (for this trivial
equation!) is the manner in which we compute Uj from Fj. In (3.17) we divided by the eigenvalues of
the matrix A, since we were solving the linear system Au = F, whereas in (4.8) we divide by —(j)?,
which is the j’th eigenvalue of the differential operator —9? /92 from the original differential equation.
Intuitively this seems like a better thing to do, and indeed it is. The spectral approximation U converges
to the solution of the differential equation much faster than the finite difference approximation u. (Note
that in spite of using the exact eigenvalue, U is not the exact solution because it results from a truncated
sine series and approximate integrals.)

4.2.1 Matrix interpretation

Note that this spectral method can be interpreted as solving a linear system of equations of the form
BU = F'. To see this, first note that (4.5) can be written in matrix form as

a=M1F,

where M is the diagonal matrix M = diag(—n?%, —(27)%, ..., —(mm)?). The j’th diagonal element is
just g/ from Section 2.10. Combining the various steps above then gives

U=Ri=RM™'F=RM'R'F
and hence U solves the system BU = F with
B=RMR*. (4.9)

This matrix B can be interpreted as an approximation to the second derivative operator, analogous to
the tridiagonal matrix A of (2.10). Unlike A, however, the spectral matrix B is a dense matrix. With the
finite difference method we approximated each u”(z;) using only 3 values u(z;_1), u(z;), and w(z;t1).
The spectral approximation uses all the values u(xy), ..., u(xy) to approximate each u" (x;). Of course
in practice we wouldn’t want to form this matrix and solve the system using Gaussian elimination, since
this would require O(m?) operations rather than the O(m logm) required using FFT’s.

4.2.2 Accuracy

We can, however, use this matrix interpretation to help analyze the accuracy and stability of the method.
We can define the local truncation error as usual by replacing the approximate solution with the true
solution, and for this simple problem where f(x) = u"(x) we see that

7i = (Bu); —u” ()

which is just the error in the spectral approximation to the second derivative.

Based on the convergence properties of Fourier series, it can be shown that if the solution u(z) has
p continuous derivatives, then the error in U decays like 1/m? as m — oco. Since h = 1/(m + 1), this
means that the method is p’th order accurate. For smooth solutions the method has a very high order
of accuracy. If the solution is C*° (infinitely differentiable) then this is true for any value of p and it
appears to be “infinite-order accurate”! This does not, however, mean that the error is zero. What
it means is that it converges to zero faster than any power of 1/m. Typically it is ezponentially fast
(for example the function 1/2™ decays faster than any power of 1/m as m — oc). This is often called
spectral accuracy.

There is a catch here however. In using a sine series representation of the function f or u we are
obtaining an odd periodic function. In order for this to converge rapidly to the true function on the
interval [0, 1] as we increase the number of terms in the series, we need the odd periodic extension of
these functions to be sufficiently smooth, and not just the function specified in this interval. So in
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deciding whether u(z) is p times continuously differentiable, we need to look at the function defined by
setting
u(—x) = —u(x)

for —1 < z < 0 and then extended periodically with period 2 from the interval [—1,1] to the whole real
line. This requires certain properties in u at the endpoints x = 0 and « = 1. In particular, the extended
u(x) is C* only if all even derivatives of u vanish at these two points along with u being C* in the
interior.

Such difficulties mean that spectral methods based on Fourier series are most suitable in certain
special cases (for example if we are solving a problem with periodic boundary conditions, in which case
we expect the solution to be periodic and have the required smoothness). Methods based on similar
ideas can be developed using other classes of functions rather than trigonometric functions, and are
often used in practice. For example, families of orthogonal polynomials such as Chebyshev or Legendre
polynomials can be used, and fast algorithms developed that achieve spectral accuracy.

4.2.3 Stability

To see that the results quoted above for the local error carry over to the global error as we refine the
grid, we also need to check that the method is stable. Using the matrix interpretation of the method
this is easy to do in the 2-norm. The matrix B in (4.9) is easily seen to be symmetric (recall that
R™! = 2hR = 2hRT and so the 2-norm of B~! is equal to its spectral radius, which is clearly 1/m>
independent of h. Hence the method is stable in the 2-norm.

4.2.4 Collocation property

Though it may not be obvious, the approximation we derived above for U(z) in fact satisfies U" (z;) =
f(x;) at each of the points x; through z,,. In other words this spectral method is also a special form
of a collocation method, as described in Section 4.1.

4.3 The finite element method

The finite element method determines an approximate soution that is a linear combination of some
specified basis functions in a very different way from collocation or expansion in eigenfunctions. This
method is typically based on some “weak form” of the differential equation, which roughly speaking
means that we have integrated the equation.

Consider, for example, the heat conduction problem in one dimension with a variable conductivity
k(z) so the steady-state equation is

(k') = f. (4.10)

Again for simplicity assume that the boundary conditions are «(0) = u(1) = 0. If we multiply both
sides of the equation (4.10) by an arbitrary smooth function v(z) and integrate the resulting product
over the domain [0, 1], we obtain

/ (@) () v(z) d = / F(2)o(x) da. (4.11)
0 0

On the left-hand side we can integrate by parts. Since v is arbitrary, let’s restrict our attention to v
that satisfy v(0) = v(1) = 0 so that the boundary terms drop out, yielding

—/0 m(x)u'(x)v'(x)dx:/o f(z)v(z) dz. (4.12)

It can be shown that if u(z) satisfies this equation for all v in some suitable class of functions, then
u(z) is in fact the solution to the original differential equation.
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Now suppose we replace u(z) by an approximation U(z) in this expression, where U(z) is a linear
combination of specified basis functions,

U) =Y ei6(a). (4.13)
j=1

Let’s suppose that our basis functions are chosen to satisfy ¢;(0) = ¢;(1) = 0, so that U(x) automati-
cally satisfies the boundary conditions regardless of how we choose the ¢;. Then we could try to choose
the coefficients ¢; in U(x) so that the equality (4.12) is satisfied for a large class of functions v(x). Since
we only have m free parameters, we can’t require that (4.12) be satisfied for all smooth functions v(z),
but we can require that it be satisfied for all functions in some m-dimensional function space. Such a
space is determined by a set of m basis functions ;(x) (which might or might not be the same as the
functions ¢;(x)). If we require that (4.12) be satisfied for the special case where v is chosen to be any
one of these functions, then by linearity (4.12) will also be satisfied for any v that is an arbitrary linear
combination of these functions, and hence for all v in this m-dimensional linear space.
Hence we are going to require that

1 m 1
- [ w) | L ad @ | viwrds = [ e d (414)
0 sy 0
fori=1, 2, ..., m. We can rearrange this to give

;Kijcjz /0 f(@);(z) d (4.15)

where
1
Kij=- [ 5(@0}@)i(z)da. (416)
0
The equations (4.15) for i =1, 2, ..., m give an m X m linear system of equations to solve for the c;,
which we could write as
Kec=F
with
1
F; =/ f(2)i(z) de. (4.17)
0

The functions 1; are generally called “test functions” while the basis functions ¢; for our approximate
solution are called “trial functions”. Frequently the same basis functions are used for both spaces. The
resulting method is known as the Galerkin method. If the trial space is different from the test space we
have a Petrov-Galerkin method.

Example 4.3. As a specific example, consider the Galerkin method for the above problem with
basis functions defined as follows on a uniform grid with x; = ih, and h = 1/(m + 1). The j’th basis
function ¢;(z) is

(I—l‘j_l)/h if Tj—1 SZ‘SZ‘J
¢j(@) =¢ (@jy1 —a)/h if v Sz <wjp (4.18)
0 otherwise

Each of these functions is continuous and piecewise linear, and ¢;(x) takes the value 1 at x; and the
value 0 at all other nodes z; for i # j. (See Figure 4.1(a).) Note that any linear combination (4.13) of
these functions will still be continuous and piecewise linear, and will take the value x; at the point z;
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dj-1(z) N ¢j(z) a2 g
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(a) Tj1 Tj o Tjyl (b) 8

Figure 4.1: (a) Two typical basis functions ¢;_; (z) and ¢;(z) with continuous piecewise linear elements.
(b) U(z), a typical linear combination such basis functions.

since U(z;) = >_; ¢j¢j(xi) = ¢; since all other terms in the sum are zero. Hence the function U(z) has
the form shown in Figure 4.1(b).

The set of functions {¢;(x)} form a basis for the space of all continuous piecewise linear functions
defined on [0, 1] with «(0) = u(1) = 0 and with kinks at the points 1, @2, ..., @y, which are called
the nodes. Note that the coefficient c¢; can be interpreted as the value of the approximate solution at
the point x;.

To use these basis functions in the Galerkin equations (4.14) (with ¢; = ¢;), we need to compute
the derivatives of these basis functions and then the elements of the matrix K and right-hand side F'.
We have

]./h if Tj—1 S:vng
gb;(a:) = —]./h if €Zj S T S Tjt1
0 otherwise.
For general functions x(x) we might have to compute an approximation to the integral in (4.16), but

as a simple example consider the case k(xz) = 1 (so the equation is just u”(z) = f(z). Then we can
compute that

! 1/h  ifj=i—lorj=i+]1,
Kij=- [ $@oie)de={ ~2/n it j=i,

0 0 otherwise.

The matrix K is quite familiar (except for the different power of h):

( -2 1 i

1 -2 1
1 1 -2 1
K=- . 4.19
- (4.19)
1 -2 1
L Iy

In some cases we may be able to evaluate the integral in (4.17) for F; explicitly. More generally we

might use a discrete approximation. Note that since ¢;(x) is nonzero only near z;, and fol ¢i(z)dx = h,
this is roughly

In fact the trapezoidal method applied to this integral on the same grid would give exactly this result.
Using (4.20) in the system K¢ = F', and dividing both sides by h, gives exactly the same linear system
of equations that we obtained in Section 2.4 from the finite difference method (for the case a = =10
we are considering here).

Exercise 4.1 If we have more general Dirichlet boundary conditions u(0) = a and u(1) = 8, we can
introduce two additional basis functions ¢o(x) and ¢ur1(x) which are also defined by (4.18). Then we
know ¢y = a and c,11 = [ and these terms in the extended sum appearing in (4.12) can be moved
to the right hand side. Carry this through to see that we get essentially the system (2.9) in this more
general case as well.
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Some comments on this method:

e The matrix K above is tridiagonal because each ¢;(x) is nonzero on only two elements, for
zj1 <z < zjy1. The function ¢;(z)¢}(z) is identically zero unless j =i — 1, i or i + 1. More
generally, if we choose basis functions that are nonzero only on some region z;_p < & < Tj4q,
then the resulting matrix would be banded with b diagonals of nonzeros below the diagonal and
a bands above. In the finite element method one almost always chooses local basis functions of
this sort, that are each nonzero over only a few elements.

e Why did we integrate by parts to obtain equation (4.12), rather than working directly with (4.11)7
One could go through the same process based on (4.11), but then we would need an approximate
U(z) with meaningful second derivatives. This would rule out the use of the simple piecewise
linear basis functions used above. (Note that the piecewise linear functions don’t have meaningful
first derivatives at the nodes, but since only integrals of these functions are used in defining the
matrix this is not a problem.)

e This is one advantage of the finite element method over collocation, for example. One can often
use functions U(z) for which the original differential equation does not even make sense because
U is not sufficiently smooth.

e There are other good reasons for integrating by parts. The resulting equation (4.12) can also be
derived from a variational principle and has physical meaning in terms of minimizing the “energy”
in the system. (See, e.g., [SF73].)

4.3.1 Two space dimensions

In the last example we saw that the one-dimensional finite element method based on piecewise linear
elements is equivalent to the finite difference method derived in Section 2.4. Since it is considerably
more complicated to derive via the finite element approach, this may not seem like a useful technique.
However, in more than one dimension this method can be extended to irregular grids on complicated
regions for which it would not be so easy to derive a finite difference method.

Consider, for example, the Poisson problem with homogeneous Dirichlet boundary conditions on the
region shown in Figure 4.2, which also shows a fairly coarse “triangulation” of the region. The points
(xj,y;) at the corners of the triangles are called nodes. The Galerkin form of the Poisson problem is

_//qu.vvdg;dyz//gfvdxdy. (4.21)

This should hold for all test functions v(z,y) in some class. Again we can approximate u(z,y) by some
linear combination of specified basis functions:

N
Ule,y) = 3 eses(ay). (4.22)

Taking an approach analogous to the one-dimensional case above, we can define a basis function ¢;(z,y)
associated with each node (x;,y;) to be the unique function that is linear on each triangle, and which
takes the value 1 at the node (x;,y;) and 0 at all other nodes. This function is continuous across the
boundaries between triangles and nonzero only for the triangles that have Node j as a corner. For
example, Figure 4.2 indicates contour lines for the basis function ¢g(z,y) as dashed lines.

Using (4.22) in (4.21) gives an N x N linear system of the form K¢ = F where

Kij = —//Qquj-ngi dx dy. (4.23)

These gradients are easy to compute and in fact are constant within each triangle since the basis function
is linear there. Since V¢; is identically zero in any triangle for which Node ¢ is not a corner, we see
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Figure 4.2: Triangulation of a two-dimensional region with 11 nodes. Contourlines for the basis function
¢s(z,y) are also shown as dashed lines.

that K;; = 0 unless Nodes ¢ and j are two corners of a common triangle. For example, in Figure 4.2
the eighth row of the matrix K will have have nonzeros only in columns 6, 7, 8, 10, and 11.

Note also that K will be a symmetric matrix, since the expression (4.23) is symmetric in ¢ and j.
It can also be shown to be positive definite.

For a typical triangulation on a much finer grid, we would have a large but very sparse matrix K.
The structure of the matrix, however, will not generally be as simple as what we would obtain with a
finite difference method on a rectangular grid. The pattern of nonzeros will depend greatly on how we
order the unknowns and equations. Direct methods for solving such systemns rely greatly on algorithms
for ordering them to minimize the bandwidth. See [DERS86].
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Chapter 5

Iterative Methods for Sparse Linear
Systems

This chapter contains a brief overview of several iterative methods for solving the large sparse linear
systems that arise from elliptic equations, either from finite-difference approximations (Chapter 3) or
from finite element approximations (Section 4.3). Large sparse linear systems arise from many other
practical problems too, of course, and the methods discussed here are important more generally.

The classical Jacobi and Gauss-Seidel methods have already been introduced in Section 3.3.3 for the
5-point Laplacian, and their extension to other problems is straightforward. It is not clear, however,
whether these methods should be expected to converge, or how quickly. Here we will analyze these
methods based on viewing them in terms of matrix splittings.

The SOR and conjugate gradient methods will also be briefly introduced. The reader can find
considerably more theoretical analysis of these methods in the literature. See for example [GO92],
[Gre97], [HY81], [Var62], [YouT71].

5.1 Matrix splitting methods

As an example we will consider the one-dimenisional analog of the Poisson problem, u"(x) = f(z) as
discussed in Chapter 2. Then we have a tridiagonal system of equations (2.9) to solve. In practice
we would never use an iterative method for this system, since it can be solved directly by Gaussian
elimination in O(m) operations, but it is easier to illustrate the iterative methods in the one-dimensional
case and all of the analysis done here carries over almost unchanged to the 2-dimensional (or even 3-
dimensional) case.

The Jacobi and Gauss-Seidel methods for this problem take the form

Jacobi: uEkH] = %(uyﬂl + uyﬂl — R2fy), 65)
Gauss-Seidel:  ulf* = %(uﬁkj” + uyﬂl —h2f), .
Both of these methods can be analyzed by viewing them as based on a splitting of the matrix A into
A=M-N (5.2)
where M and N are two m X m matrices. Then the system Au = f can be written as
Mu—Nu=f = Mu=Nu+ f,
which suggests the iterative method
MulFt] = NylFl 4 7. (5.3)

57
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In each iteration we assume ul*! is known and we obtain ul**!l by solving a linear system with the
matrix M. The basic idea is to define the splitting so that M contains as much of A as possible (in
some sense) while keeping its structure sufficiently simple that the system (5.3) is much easier to solve
than the original system with the full A. Since systems involving diagonal, lower or upper triangular
matrices are relatively simple to solve, there are some obvious choices for the matrix M. In order to
discuss these in a unified framework, write

A=D-L-U (5.4)

in general, where D is the diagonal of A, —L is the strictly lower triangular part, and —U is the strictly
upper triangular part. For example, the tridiagonal matrix (2.10) would give

92 0 [0 0
0 -2 0 1 0 O
1 0 -2 0 1 1 0 0
0 -2 0 1 0
i 0 -2 | i 1

with —U being the remainder of A.

In the Jacobi method, we simply take M to be the diagonal part of A, M = D, so that

0 1
1 0 1
9 1 1 0 1
1 0 1
L 1 0 -
The system (5.3) is then diagonal and extremely easy to solve:
( 01 i
1 0 1
1 1 0 1 B2
[k+1] _ = (k] _
ulk+) = 2 a2,
1 0 1
| Lo

which agrees with (5.1).

In Gauss-Seidel, we take M to be the full lower triangular portion of A, so M = D — L and N = U.
The system (5.3) is then solved using forward substitution, which results in (5.1).

To analyze these methods, we derive from (5.3) the update formula

u[k+1} — M*lNU[k] + Mflf

(5.5)
= Gul" + b,
where G = M~!N is the iteration matriz and b= M~'f.
Let u* represent the true solution to the system Ag = f. Then
u* = Gu* +b. (5.6)

This shows that the true solution is a fixed point, or equilibrium, of the iteration (5.5), i.e., if ulf] = u*
then ulFt1 = y* as well. However it is not clear that this is a stable equilibrium, i.e., that we would
converge towards u* if we start from some incorrect initial guess.



R. J. LeVeque — AMath 585-6 Notes 59

If elk] = ulkl — u* represents the error, then subtracting (5.6) from (5.5) gives
ekt — Gelkl
and so after k steps we have
elfl = gFelol (5.7)

From this we can see that the method will converge from any initial guess ul’ provided G* — 0 (an
m x m matrix of zeros) as k — co. When is this true?
For simplicity, assume that G is a diagonalizable matrix, so that we can write

G = RTR™'
where R is the matrix of right eigenvectors of G and I' is a diagonal matrix of eigenvalues v1, ¥2, ..., Ym.
Then
G* = RT*R™1, (5.8)
where .
7 .
ok _ 72
Vi
Clearly the method converges if |y,| < 1 for all p =1, 2, ..., m, ie, if p(G) < 1 where p is the

spectral radius.

5.1.1 Rate of convergence

From (5.7) we can also determine how rapidly the method can be expected to converge in cases where
it is convergent. Using (5.8) in (5.7) and using the 2-norm, we obtain

e 1z < T[] BRI | R sl 2 = p*cond (R) el (5:9)

where p = p(G) and cond(R) = ||R||2]|R™||2 is the condition number of the eigenvector matrix.

If the matrix G is a normal matrix (meaning it commutes with its transpose, in particular if it is
symmetric as when Jacobi is applied to the Poisson problem), then the eigenvectors are orthogonal and
cond(R) = 1. In this case we have

ez < e (5.10)

Note: These methods are linearly convergent, in the sense that |el*t1|| < pllel®|| and it is the
first power of ||e*]|| that appears on the right. Recall that Newton’s method is typically quadratically
convergent, and it is the square of the previous error that appears on the right hand side. But Newton’s
method is for a nonlinear problem, and requires solving a linear system in each iteration. Here we are
looking at solving such a linear system.

The average rate of convergence for a method after k iterations is sometimes defined by

1
Fi(G) = = ¢ log]|G"].

while the asymptotic rate of convergence is

Roo(G) = —log(p(G)).
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Example 5.4. For the Jacobi method we have
G=D'D-A)=I-D"A.
If we apply this method to the boundary value problem v” = f, then

h2

=1 A.
G -I-2

The eigenvectors of this matrix are the same as the eigenvectors of A, and the eigenvalues are hence

Yp =1+ h;/\p
where AP is given by (2.23). So
vp =cos(pmh), p=1,2, ..., m,
where h = 1/(m + 1). The spectral radius is
p(@) = 1| = cos(mh) ~ 1 — %ﬁh? +O?). (5.11)

The spectral radius is less than one for any h > 0 and the Jacobi method converges, but we see that
p(G) = 1 as h — 0 and for small h is very close to one, resulting in very slow convergence.

How many iterations are required to obtain a good solution? Suppose we want to reduce the error
to ||ell|| = €||el®)|| (where typically ||el”)]| is on the order of 1).! Then we want p* ~ ¢ and so

k = log(e)/ log(p). (5.12)

How small should we choose €? To get full machine precision we might choose € to be close to the
machine roundoff level. However, this would typically be very wasteful. For one thing, we rarely need
this many correct digits. More importantly, however, we should keep in mind that even the exact
solution u* of the linear system Au = f is only an approzimate solution of the differential equation we
are actually solving. If we are using a second order accurate method, as in this example, then u} differs
from u(x;) by something on the order of h? and so we cannot achieve better accuracy than this no
matter how well we solve the linear system. In practice we should thus take ¢ to be something related
to the expected global error in the solution, e.g., e = Ch? for some fixed C.

To estimate the order of work required asymptotically as h — 0, we see that the above choice gives

k = (log(C) + 2log(h))/ log(p).- (5.13)

For Jacobi on the boundary value problem we have p &~ 1 — 17?h? and hence log(p) & —iw2h®. Since
h=1/(m+ 1), using this in (5.13) gives

k= O(m?logm) as m — oc. (5.14)

Since each iteration requires O(m) work in this one-dimensional problem, the total work required to
solve the problem goes like
total work = O(m?” logm).

Of course this tridiagonal problem can be solved exactly in O(m) work, so we would be very foolish to
use an iterative method at all here!

L Assuming we are using some grid function norm, as discussed in Appendix Al. Note that for the 2-norm in one
dimension this requires introducing a factor of v/h in the definition of both ||e!*]|| and ||el]||, but these factors cancel out
in choosing an appropriate e.
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For a Poisson problem in 2 or 3 dimensions it can be verified that (5.14) still holds, though now the
work required per iteration is O(m?) or O(m?) respectively if there are m grid points in each direction.
In 2 dimensions we would thus find that

total work = O(m* logm). (5.15)

Recall from Section 3.3 that Gaussian elimination on the banded matrix requires O(m?) operations
while other direct methods can do much better, so Jacobi is still not competitive. Luckily there are
much better iterative methods.

For the Gauss-Seidel method applied to the Poisson problem, it can be shown that

p(G) =1—m*h* + O(h*) as h — 0. (5.16)

This still approaches 1 as h — 0, but is better than (5.11) by a factor of 2 and the number of iterations
required to reach a given tolerance will typically be half the number required with Jacobi. The order
of magnitude figure (5.15) still holds, however, and this method is also not widely used.

5.1.2 SOR

If we look at how iterates ul*! behave when Gauss-Seidel is applied to a typical problem, we will generally
see that uEkH] is closer to u} than ugk] was, but only by a little bit. The Gauss-Seidel update moves
u; in the right direction, but is far too conservative in the amount it allows u; to move. This suggests
that we use the following two-stage update, illustrated again for the problem u" = f:
1
as k+1 k
ui® = §(u£_1 ] +u£_£1 —h2f)

(5.17)
=l + o — )

u£k+1]

where w is some scalar parameter. If w = 1 then ul*") = 45 is the Gauss-Seidel update. If w > 1

then we move further than Gauss-Seidel suggests. In this case the method is known as successive
overrelazation (SOR).

If w < 1 then we would be underrelaxing, rather than overrelaxing. This would be even less effective
than Gauss-Seidel as a stand-alone iterative method for most problems, though underrelaxation is
sometimes used in connection with multigrid methods[?].

The formulas in (5.17) can be combined to yield

1 = Ll ol - ) + (- W)l (518)

and it can be verified that this corresponds to a matrix splitting method with

M:l(D—wL), N:l((l—w)D-l-wU).
w w

Analyzing this method is considerably trickier than the Jacobi or Gauss-Seidel methods because
of the form of these matrices. A theorem of Ostrowski states that if A is symmetric positive definite
and D — wL is nonsingular, then the SOR method converges for all 0 < w < 2. Young[You50] showed
how to find the optimal w to obtain the most rapid convergence for a wide class of problems (including
the Poisson problem). This elegant theory can be found in many introductory texts. (For example,
see [GO92], [HY81], [Var62], [You7l]. See also [LT88] for a different introductory treatment based on
Fourier series and modified equations in the sense of Chapter 16, and [ALY88] for applications of this
approach to the 9-point Laplacian.)

For the Poisson problem it can be shown that the SOR method converges most rapidly if w is chosen

as 5
=—————=2-—27h.
Wopt = 771 sin(mh) i
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Figure 5.1: Errors vs. k for three methods.

This is nearly equal to 2 for small A. One might be tempted to simply set w = 2 in general, but
this would be a poor choice since SOR does not then converge! In fact the convergence rate is quite
sensitive to the value of w chosen. With the optimal w it can be shown that the spectral radius of the
corresponding G matrix is

Popt = Wopt — 1 = 1 — 27h,

but if w is changed slightly this can deteriorate substantially.

Even with the optimal w we see that pope — 1 as h — 0, but only linearly in h rather than
quadratically as with Jacobi or Gauss-Seidel. This makes a substantial difference in practice. The
expected number of iterations to converge to the required O(h?) level, the analogue of (5.14), is now

kopt = O(mlogm).

Figure 5.1 shows some computational results for the methods described above on the 2-point bound-
ary value problem.

5.2 Conjugate gradient methods
To appear. See [Gre97].

5.2.1 Preconditioners

To appear.

5.3 Multigrid methods

To appear. See [Bri87], [Jes84].
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Chapter 6

The Initial Value Problem for
ODE’s

In this chapter we begin a study of time-dependent differential equations, beginning with the initial
value problem (IVP) for a time-dependent ODE. Standard introductory texts are Lambert[Lam73] and
Gear[Gea7l]. Henrici[Hen62] gives a more complete description of some theoretical issues, although
stiff equations are not discussed. Hairer, Norsett, and Wanner[HNW87, HNW93] is a more recent and
complete survey of the field.

The initial value problem takes the form

uw'(t) = f(u(t),t) for t > tg (6.1)
with some initial data
u(to) = 1. (6.2)

We will often assume ¢y = 0 for simplicity.
In general (6.1) may represent a system of ODEs, i.e., u may be a vector with s components

w1, ..., us and then f(u,t) also represents a vector with components fi(u,t), ,..., fs(u,t), each of
which can be a nonlinear function of all the components of u. The problem is linear if
flu,t) = A(t)u + b(t) (6.3)

where A(t) € R°*® and b(t) € R’.

We will consider only the first order equation (6.1) but in fact this is more general than it appears
since we can reduce higher order equations to a system of first order equations.

Example 6.1. Consider the initial value problem for the ODE

u" (t) = o' (t)u(t) — 2t(u" (t))? for t > 0.

This third order equation requires three initial conditions, typically specified as

u(0) =m
’U,I(O) =172 (64)
u"(0) =3
We can rewrite this as a system of the form (6.1) and (6.2) by introducing the variables
ui(t) = wu(t)
us(t) = u'(t)
ug(t) = u"(#).
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Then the equations take the form

Gt = uslt)
Wb(t) = ust)
Wt = wus(t) - 20a3(0)

which defines the vector function f(w,t). The initial condition is simply (6.2) where the three compo-
nents of 7 come from (6.4). More generally, any single equation of order m can be reduced to m first
order equations, and an mth order system of s equations can be reduced to a system of ms first order
equations.

It is also sometimes useful to note that any explicit dependence of f on ¢t can be eliminated by
introducing a new variable that is simply equal to ¢. In the above example we could define

so that

The system then takes the form

o (8) = f(u(t)) (6.5)
with
U2 m
T = | oy —gugaz | 24 w@ = P
1 0

The equation (6.5) is said to be autonomous since it does not depend explicitly on time. It is often
convenient to assume f is of this form since it simplifies notation.

We will always assume that f is Lipschitz continuous in w as described in the next section, which
implies that the initial value problem has a unique solution over some time interval.

6.1 Lipschitz continuity
The standard theory for the existence of a solution to the initial value problem

U’,(t) = f(uvt)a U(O) =n (66)

is discussed in many texts, e.g., [CL55]. To guarantee that there is a unique solution it is necessary
to require a certain amount of smoothness in the function f(u,t) of (6.6). What we require is that
the function f(u,t) be Lipschitz continuous in u over some range of ¢ and u, i.e., that there exist some
constant L > 0 so that

|F(u,t) = f(u”,8)] < Lju —u| (6.7)

for all w and w* in this range. This is slightly stronger than mere continuity, which only requires that
|f(u)— f(u*)| = 0 as u — u*. Lipschitz continuity requires that |f(u) — f(u*)| = O(|lu—u*|) as u — u*.
The function is uniformly Lipschitz continuous if there is a single constant L that works for all u and
u*.

If f(u,t) is differentiable with respect to u and this derivative f,, = 0f/0u is bounded then we can
take

L = max |fy,(u,t)],

since

fw) =) + fulv)(u—u’)
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for some value v between u and u*.
Example 6.2. For the linear problem u'(t) = Au(t) + ¢(t), f'(v) = A and we can take L = |A|. This
problem of course has a unique solution for any initial data » given by

t
u(t) = e)‘(tfto)n -|-/ e)‘(th)g(T) dr. (6.8)

to

In particular, if A = 0 then L = 0. In this case f(u,t) = g(t) is independent of u. The solution is
then obtained by simply integrating the function g(t),

u(t) =n+ / g(T)dr. (6.9)

to

6.1.1 Existence and uniqueness of solutions

The basic existence and uniqueness theorem states that if f is uniformly Lipschitz continuous over some
time period 0 < ¢t < T' then there is a unique solution to the initial value problem (6.6) from any initial
value n. If f is Lipschitz but not uniformly so, then there will be a unique solution through any value
7 over some finite time interval, but this solution may not exist past some time, as the next example
shows.

Example 6.3. Consider the initial value problem

with initial conditions
u(0) =n > 0.

The function f(u) = u? is Lipschitz continuous over any finite interval [ —a, 1+ a] with L = 2(n+ a).
From this it can be shown that the initial value problem has a unique solution over some time interval
0 <t < T with T > 0. However, since f is not uniformly Lipschitz for all u (i.e., there is not a single
value of L that works for all u), we cannot prove that a solution exists for all time, and in fact it does
not. The solution to the initial value problem is

and so u(t) — oo as t = 1/n. There is no solution beyond time 1/7.

If the function f is not Lipschitz continuous at some point then the initial value problem may fail
to have a unique solution over any time interval.
Example 6.4. Consider the initial value problem

with initial conditions
u(0) =0.

The function f(u) = +/u is not Lipschitz continuous near u = 0 since f'(u) = 1/(24/u) — oo as u — 0.
We cannot find a constant L so that the bound (6.7) holds for all u and u* near 0.

As a result, this initial value problem does not have a unique solution. In fact it has two distinct
solutions:

and
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6.1.2 Systems of equations

For systems of m > 1 ordinary differential equations, u(t) € IR™ and f(u,t) is a function mapping
R™ x R — R™. We say the function f is Lipschitz continuous in some norm || - || if there is a constant
L such that

1 (u,t) = f(u™, 0)|| < Lflu— w7 (6.10)

for all u in a neighborhood of u*. By the equivalence of finite-dimensional norms (Appendix Al), if f is
Lipschitz continuous in one norm then it is Lipschiz continuous in any other norm, though the Lipschitz
constant may depend on the norm chosen.

The theorems on existence and uniqueness carry over to systems of equations.

Example 6.5. Consider the pendulum problem from Section 2.15,

0 (1) = — sin(8(1)),

which can be rewritten as a first order system of two equations by introducing v(t) = 6'(t):

=0 0= e |

Consider the max-norm. We have
llu = oo = max(l9 — 67, |o — o)

and
1/ (u) = f(u")]loo = max(Jv — v, |sin(f) — sin(67)]).
To bound || f(u) — f(u*)||ec, first note that |v — v*| < |lu — u*||c. We also have

|sin(f) — sin(6%)] <10 — 0*| < |Ju — u”]|0o
since the derivative of sin(6) is bounded by 1. So we have Lipschitz continuity with L = 1:

1 () = f (@)oo < flu = 6™ |oc.

6.1.3 Significance of the Lipschitz constant

The Lipschitz constant measures how much f(u,t) changes if we perturb u (at some fixed time ¢). Since
f(u,t) = u'(t), the slope of the line tangent to the solution curve through the value u, this indicates how
the slope of the solution curve will vary if we perturb u. The significance of this is best seen through
some examples.

Example 6.6. Consider the trivial equation u'(¢) = g(¢), which has Lipschitz constant L = 0 and
solutions given by (6.8). Several solution curves are sketched in Figure 6.1. Note that all of these
curves are “parallel”; they are simply shifted depending on the initial data. Several tangent lines at
one particular time are indicated. They are all parallel since f(u,t) = g(¢) is independent of w.

Example 6.7. Consider u'(t) = Au(t) with A constant and L = |A|. Then u(t) = u(0) exp(At). Two
situations are shown in Figure 6.2 for negative and positive values of A. Here the slope of the solution
curve does vary depending on u. The variation in the slope with u (at fixed t) gives an indication of
how rapidly the solution curves are converging towards one another (in the case A < 0) or diverging
away from one another (in the case A > 0). If the magnitude of ) is increased, the variation would
clearly be more rapid.

The size of the Lipschitz constant is significant if we intend to solve the problem numerically since
our numerical approximation will almost certainly produce a value U" at time ¢, that is not exactly
equal to the true value u(t,). Hence we are on a different solution curve than the true solution. The
best we can hope for in the future is that we stay close to the solution curve that we are now on. The
size of the Lipschitz constant gives an indication of whether solution curves that start close together
can be expected to stay close together or to diverge rapidly.
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Figure 6.1: Solution curves for Example 6.6, where L = 0.
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Figure 6.2: Solution curves for Example 6.7 with (a) A= —3 and (b) A = 3.

6.1.4 Limitations

Actually the Lipschitz constant is not the perfect tool for this purpose, since it does not distinguish
between rapid divergence and rapid convergence of solution curves. In both Figure 6.2(a) and Fig-
ure 6.2(b) the Lipschitz constant has the same value since L is the absolute value of A. But we would
expect that rapidly convergent solution curves as in Figure 6.2(a) should be easier to handle numerically
than rapidly divergent ones. If we make an error at some stage then the effect of this error should decay
at later times rather than growing. To some extent this is true and as a result error bounds based on
the Lipschitz constant may be orders of magnitude too large in this situation. This is illustrated in
Section 7.3.4 where a remedy is proposed for one such error estimate.

However, rapidly converging solution curves can also give serious numerical difficulties, which one
might not expect at first glance. This is discussed in detail in Chapter 10 on “stiff equations”.

One should also keep in mind that a small value of the Lipschitz constant does not necessarily mean
that two solution curves starting close together will stay close together forever.

Example 6.8. Consider two solutions to the pendulum problem from Example 6.5, one with initial
data

01(0) =T =6 Ul(o) :07
and the other with
02(0) =7+ €, 1)2(0) =0.

The Lipschitz constant is 1 and the data differs by 2¢, which can be arbitarily small, and yet the
solutions soon diverge dramatically, as Solution 1 falls towards # = 0 while Solution 2 falls the other
way, towards 6 = 27.
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6.2 Some basic numerical methods

We begin by listing a few standard approaches to discretizing the equation (6.1). Note that the IVP
differs from the BVP considered before in that we are given all the data at the initial time ¢, = 0 and
from this we should be able to march forward in time, computing approximations at successive times
t1, ta, ... We will use k to denote the time step, so t,, = nk for n > 0. It is convenient to use the
symbol k that is different from the spatial grid size h since we will soon study PDEs which involve both
spatial and temporal discretizations.

We are given initial data

U =n (6.11)
and want to compute approximations U', U2, ... satisfying
U™ = u(ty,).

We will use superscripts to denote the time step index, again anticipating the notation of PDEs where
we will use subscripts for spatial indices.

The simplest method is Fuler’s method (also called Forward Fuler), based on replacing u'(t,,) by
D, U™ = (U™ —U")/k from (1.1). This gives the method

Un+1 _yn

- =fU™, n=01,... (6.12)

Rather than viewing this as a system of simultaneous equations as we did for the boundary value
problem, it is possible to solve this explicitly for U"*! in terms of U™:

Ut = U 4 kF(U™). (6.13)

From the initial data U° we can compute U', then U?, and so on. This is called a time-marching
method.
The Backward Euler method is similar, but is based on replacing u'(t,4+1) by D_U"™*!:

Un+1 _yn

= ju) (6.14)

or
Ut = U+ kF(UY). (6.15)

Again we can march forward in time since computing U™*! only requires that we know the previous
value U™. In the Backward Euler method, however, (6.15) is an equation that must be solved for U™ !
and in general f(u) is a nonlinear function. We can view this as looking for a zero of the function

g(u) =u—kf(u) =U"

which can be approximated using some iterative method such as Newton’s method discussed in Ap-
pendix A3.
Because the Backward Euler method gives an equation that must be solved for U™*1, it is called an
implicit method, whereas the Forward Euler method (6.13) is an ezplicit method.
Another implicit method is the Trapezoidal method, obtained by averaging the two Euler methods:
grtt—un 1
= (UM + JEY). (6.16)
As one might expect, this symmetric approximation is second order accurate whereas the Euler methods
are only first order accurate.
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The above methods are all one-step methods, meaning that U™ is determined from U™ alone and
previous values of U are not needed. One way to get higher order accuracy is to use a multi-step method
that involves other previous values. For example, using the approximation

u(t+ k) —u(t—k)
2k

yields the Midpoint method (also called the Leapfrog method),

:w@+%ﬁw%ﬂ+ow%

Un+1 _ Unfl
= f(U" 1
o7 f) (6.17)
or
urtl = gt 42k f(UM) (6.18)

which is a second order accurate explicit 2-step method. The approximation Dyu from (1.11), rewritten

in the form
3u(t+ k) — 4u(t) + u(t — k)

2k
yields a second order implicit 2-step method

1 .
=u'(t+k)+ ﬁkzu”'(t +k)+ -

UMt —4ut 4 Ut = 2k f (U (6.19)

This is one of the BDF methods that will be discussed further in Chapter 10.

6.3 Truncation errors

The truncation error for these methods is defined in the same way as in Chapter 2.
Example 6.9. The local truncation error of the midpoint method (6.17) is defined by

n o _ u(tny1) — ultn-1)
)

= |u'(ty) + %k2u’”(tn) + OB | = (tn)
- %Ww%%)+om%.

Note that since u(t) is the true solution of the ODE, v'(t,,) = f(u(t,)). The truncation error is O(k?)
and so we say the method is second order accurate, although it is not yet clear that the global error
will have this behavior. As always, we need some form of stability to guarantee that the global error
will exhibit the same rate of convergence as the local truncation error. This will be discussed below.

Exercise 6.1 Compute the local truncation error of the trapezoidal method and the BDF method dis-
cussed above.

6.4 One-step errors

In much of the literature concerning numerical methods for IVPs; a slightly different definition of the
local truncation error is used that is based on the form (6.18), for example, rather than (6.17). Denoting
this value by £", we have

L7 = ultusr) —ultn 1) — 2kf(ultn)) (6.20)
_ %kSu”’(tn)+O(k4).
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Since £" = 2k7™, this local error is O(k®) rather than O(k?), but of course the global error remains the
same, and will be only O(k?). Using this alternative definition, many standard results in ODE theory
say that a pth order accurate method should have a local truncation error that is O(kP™1). With the
notation we are using, a pth order accurate method has a LTE that is O(k?). This notation is consistent
with the standard practice for PDEs and leads to a more coherent theory, but one should be aware of
this possible source of confusion.

I prefer to call L™ the one-step error, since this can be viewed as the error that would be introduced
in one time step if the past values U™, U"~!, ... were all taken to be the exact values from u(t). For
example, in the midpoint method (6.18) suppose that

U =u(t,) and U™ =u(t,_1)
and we now use these values to compute U™, an approximation to u(t,1):

U™ = uty—1) + 2k f(u(ty,))
= u(ty_1)+ 2ku'(ty).

Then the error is
W(tnss) = U™ = ultyar) = u(tn-1) — 2k (8,) = £,

From (6.20) we see that in one step the error introduced is O(k®). This is consistent with second order
accuracy in the global error if we think of trying to compute an approximation to the true solution
u(T) at some fixed time 7' > 0. In order to compute from time ¢ = 0 up to time T', we need to take
T/k time steps of length k. A rough estimate of the error at time 7" might be obtained by assuming
that a new error of size £™ is introduced in the nth time step, and is then simply carried along in later
time steps without affecting the size of future local errors and without growing or diminishing itself.
Then we would expect the resulting global error at time T to be simply the sum of all these local errors.
Since each local error is O(k®) and we are adding up T'/k of them, we end up with a global error that
is O(k?).
This viewpoint is in fact exactly right for the simplest ODE

in which f is independent of u and the solution is simply the integral of f, but it is a bit too simplistic
for more interesting equations since the error at each time feeds back into the computation at the next
step in the case where f depends on u. Nonetheless, it is essentially right in terms of the expected order
of accuracy, provided the method is stable. In fact it is useful to think of stability as exactly what is
needed to make this naive analysis essentially correct, by insuring that the old errors from previous time
steps do not grow too rapidly in future time steps. This will be investigated in detail in the following
chapters.

6.5 Linear Multistep Methods

All of the methods introduced so far are members of a class of methods called Linear Multistep Methods
(LMMs). In general, an r-step LMM has the form

S U =k g f(U™), (6.21)
i=0 =0

The value U™*" is computed from this equation in terms of the previous values U?t7—1, Uyn+r—2

., U™ 1If 8. = 0 then the method (6.21) is explicit, otherwise it is implicit. Note that we can
multiply both sides by any constant and have essentially the same method, though the coefficients a;
and 3; would change. The normalization o, =1 is often assumed to fix this scale factor.
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There are special classes of methods of this form that are particularly useful and have distinctive
names.
Example 6.10. The Adams methods have the form

Uttt =umttt kY B f(U). (6.22)
j=0
These methods all have
ar=1, a1 =-1, and a; =0for j <r—1.

The 3; coefficients are chosen to maximize the order of accuracy. If we require 8, = 0 so the method
is explicit then the r coefficients 8y, 51, ..., Br_1 can be chosen so that the method has order r. This
gives the r-step Adams-Bashforth method. Without this restriction we have one more free parameter
B, and so we can eliminate an additional term in the local truncation error, giving an implicit method
of order 7 + 1 called the r-step Adams-Moulton method.

Euler’s method is the 1-step Adams-Bashforth method and the trapezoidal method is the 1-step
Adams-Moulton method.

Example 6.11. The explict Nystrom methods have the form

r—1
ygrtr = gntr=2 4 g Zﬂ]f(Un-H)

i=0

with the 8; chosen to give order r. The midpoint method (6.17) is the 2-step Nystrom method.

6.5.1 Local truncation error

For LMMs it is easy to derive a general formula for the local truncation error. We have

1 T T
T(tntr) = % Z aju(tngj) — kZﬂjul(tn+j)
j=0 j=0
Assuming u is smooth and expanding in Taylor series gives
U(tny) = ulty)+ jku'(tn) +

Wtnsg) = wlta) + k" (60) + S GRV " (1) + -

and so

rltare) = 3 [ Day | ut) + [ YGas -6 | o)
j=0

r

1.
+k Z(Ejzaj_jﬂJ) ' (tn)

=0

r

- 1. 1

Jj=0

The method is consistent if 7 — 0 as kK — 0, which requires that at least the first two terms in this
expansion vanish:

T

Z aj; = 0 and ZjOéj = Zﬂj (623)
=0 =0

j=0
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If the first p + 1 terms vanish then the method will be pth order accuate. Note that these conditions
depend only on the coefficients a; and §; of the method and not on the particular differential equation
being solved.

6.5.2 Characteristic polynomials

It is convenient at this point to introduce the so-called characteristic polynomials p(¢) and o(¢) for the
LMM:

p(Q) = ;¢ and  o(() =) B¢ (6.24)
j=0 j=0

The first of these is a polynomial of degree r. So is o(() if the method is implicit, otherwise its degree is
less than r. Note that p(1) = > a; and also that p'(¢) = " ja;¢?~!, so that the consistency conditions
(6.23) can be written quite concisely as conditions on these two polynomials:

p(1)=0, p'(1)=0(1). (6.25)

This, however, is not the main reason for introducing these polynomials. The location of the roots of
certain polynomials related to p and o plays a fundamental role in stability theory as we will see in the
next chapter.

6.5.3 Starting values

One difficulty with using LMMs if 7 > 1 is that we need the values U°, U!, ..., U""! before we
can begin to apply the multistep method. The value U® = 5 is known from the initial data for the
problem, but the other values are not and must typically be generated by some other numerical method
or methods.

Example 6.12. If we want to use the midpoint method (6.17) then we need to generate U! by
some other method before we begin to apply (6.17) with n = 1. We can obtain U! from U° using
any 1-step method such as Euler’s method or the Trapezoidal method. Since the midpoint method is
second order accurate we need to make sure that the value U' we generate is sufficiently accurate that
this second order accuarcy will not be lost. Our first impulse might be to conclude that we need to use
a second order accurate method such as the Trapezoidal method rather than the first order accurate
Euler method, but in fact this is wrong. The overall method is second order in either case. The reason
that we achieve second order accuracy even if Euler is used in the first step is exactly analogous to what
was observed earlier for boundary value problems, where we found that we can often get away with
one order of accuracy lower in the local error for the boundary conditions than what we have elsewhere.

In the present context this is easiest to explain in terms of the 1-step error. The midpoint method
has a l-step error that is O(k®) and because this method is applied in O(T'/k) time steps, the global
error is expected to be O(k?). Euler’s method has a one-step error that is O(k?) but we are applying
this method only once.

If U° = n = u(0) then the error in U! will be O(k?). If the midpoint method is stable then this
error will not be magnified unduly in later steps and its contribution to the global error will be only
O(k?). The overall second order accuracy will not be affected.

Example 6.13. Suppose we solve

uw'(t) = 3u(t), wu(0)=1

with solution u(t) = e3!. We take U® = 1. Generating U" using Euler’s method gives U' = (1+3k)U" =
1 + 3k which agrees with u(k) = €3 to O(k?). Table 6.1 shows the resulting errors at time 7' = 1 if we
now proceed with the midpoint method. The error with values of k = 277, j = 5, 6, ... along with
the ratio of errors for successive values of k. This ratio approaches 4, confirming second order accuracy.
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Table 6.1: Error in the solution of Example 6.13 with ¥ = 277 when Euler and Trapezoidal are used to
generate U'.

j | Error with Euler | Ratio | Error with Trapezoidal | Ratio
5 1.3127e—01 3.90 8.5485e—02 3.80
6 3.3008e—02 3.97 2.1763e—02 3.92
7 8.2641e—03 3.99 5.4816e—03 3.97
8 2.0668e—03 3.99 1.3750e—03 3.98
9 5.1674e—04 3.99 3.4428e—04 3.99
10 1.2919e—-04 3.99 8.6134e—05 3.99

Table 6.1 also shows the results obtained if the Trapezoidal method is used to generate U!. Although
the error is slightly smaller, the order of accuracy is the same.

More generally, with an r-step method of order p, we need r starting values U°, U, ..., U™"! and
we need to generate these values using a method that has a one-step error that is O(kP) (corresponding
to a local truncation error that is O(k?~!)). Since the number of times we apply this method (r — 1)
is independent of k as k — 0, this is sufficient to give an O(h*) global error.

If p > 3 then there is still a difficulty here. To generate U' from U° we need to use a 1-step method,
but 1-step linear multistep methods have order 2 at most and hence the one-step error is at best O(k?),
limiting our global accuracy to third order. However, there are other classes of 1-step methods that
have greater accuracy and can be used in this context. Two such classes of methods, Taylor series and
Runge-Kutta methods, will now be introduced.

-1

6.6 Taylor series methods

This approach is not often used in practice because it requires differentiating the differential equation
and can entail messy algebraic expressions. However it is such an obvious approach that it is worth
mentioning, and in some cases it may be useful.

The idea is to use the first p + 1 terms of the Taylor series expansion

1. 1
wltnr) = ultn) + k() + K" (1) + -+ kP (1)
p!
to obtain a p’th-order accurate method. The problem is that we are only given
u'(t) = f(u(t),t)
and we must compute the higher derivatives by repeated differentiation of this function. An example

should suffice to illustrate the technique and its limitations.
Example 6.14. Suppose we want to solve the equation

u'(t) = t*sin(u(t)).

Then we can compute

u' (t) 2t sin(u(t)) + t* cos(u(t)) u' (t)

= 2tsin(u(t)) + t* cos(u(t)) sin(u(t)).
A second order method is given by
. 1
U™ = U™ + kt? sin(U™) + §k2[2tn sin(U™) + t% cos(U™) sin(U™)].

Clearly higher order derivatives can be computed and used, but this is cumbersome even for this simple
example.

Exercise 6.2 Derive the third order Taylor series method for the above equation.
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6.7 Runge-Kutta Methods

Most methods used in practice do not require that the user explicitly calculate higher order derivatives.
Instead a higher order finite difference approximation is designed which typically models these terms
automatically.

A multistep method can achieve high accuracy by using high order polynomial interpolation through
several points. To achieve the same effect with a 1-step method it is typically necessary to use a multi-
stage method, where intermediate values are generated and used within a single time step.

Example 6.15. A 2-stage explicit Runge-Kutta method is given by

1
U = U”+§kf(U”)
urtt = UM+ kf(UY).

In the first stage an intermediate value is generated which approximates u(t,1/2) via Euler’s method.
In the second step the function f is evaluated at this midpoint to estimate the slope over the full time
step. Since this now looks like a centered approximation ot the derivative we might hope for second
order accuracy, as we’ll now verify by computing the local truncation error.

Combining the two steps above, we can rewrite the method as

Ut = U™ + kf <U" + %kf(U")) .

The truncation error is

T =

(u(tnrs) - ulta)) - f (u<tn> + %kf(u(tn)> . (6.26)

| =

Note that
f <u(tn) + %kf(u(tn)> = f (u(tn) + %ku’(t@)

=t + 1) Cut) + R (00))2 " )+

Since f(u(ty)) = u'(ty) and differentiating gives f'(u)u’ = u”, we obtain

f (u(tn) + %kf(u(t,J) = (t) + %ku”(tn) + O3,

Using this in (6.26) gives

1 1.
z (ku'(tn) + §k2u”(tn) + O(k3)>
1
- (u'(tn) + §ku”(tn) + O(k2)>
= Ok
and the method is second order accurate. (Check the O(k?) term to see that this does not vanish.)

Remark. An easier way to determine the order of accuracy is to apply the method to the special

test equation u' = Au, which has solution u(t,41) = e**u(t,), and determine the error on this problem.

Here we obtain
1
Urtt = U+ kX (U" + 5kAU”)
1
= U+ (KANU" + E(k/\)ZU"
= MU+ Ok,
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The one step error is O(k®) and hence the local truncation error is O(k?). Of course we have only
checked that the local truncation error is O(k?) on one particular function u(t) = e*, not on all smooth
solutions, but this is generally a reliable indication of the order more generally. Applying a method to
this special equation is also a fundamental tool in stability analysis — see Chapter 8.

Example 6.16. One very popular Runge-Kutta method is the 4’th order 4-stage method given by

FO = f(Unv tn)
Fi=f <U” + Lem b+ 1k>
2 2
1 1
F=f <U" + gk, b + §k> (6.27)

F3 = f(U" +EkFy, thy1)

k
Un+1 =U" + E(FO + 2F1 + 2F5 +F3).
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Chapter 7

Zero-Stability and Convergence for
Initial Value Problems

7.1 Convergence

In order to discuss the convergence of a numerical method for the Initial Value Problem, we focus on a
fixed (but arbitrary) time 7' > 0 and consider the error in our approximation to u(7") computed with
the method using time step k. The method converges on this problem if this error goes to zero as k — 0.
Note that the number of time steps that we need to take to reach time T increases as k — 0. If we use
N to denote this value (N = T'/k), then convergence means that

lim UN = u(T). (7.1)
Nk=T

In principle a method might converge on one problem but not on another, or converge with one set of
starting values but not with another set. In order to speak of a method being convergent in general, we
require that it converges on all problems in a reasonably large class with all reasonable starting values.
For an r-step method we need r starting values. These values will typically depend on k, and to make
this clear we will write them as U°(k), U'(k), ..., U""!(k). While these will generally approximate
u(t) at the times to = 0, t1 = k, ..., t,_1 = (r — 1)k respectively, as k — 0 each of these times
approaches typ = 0. So the weakest condition we might put on our starting values is that they converge
to the correct initial value n as k — 0:

lim UY(k) =nfor v=0,1, ..., r— 1L (7.2)
k—0

We can now state the definition of convergence.

Definition 7.1.1 An r-step method is said to be convergent if applying the method to any ODE (6.1)
with f(u,t) Lipschitz continuous in w, and with any set of starting values satisfying (7.2), we obtain
convergence in the sense of (7.1) for every fized time T > 0.

In order to be convergent, a method must be consistent, meaning as before that the LTE is o(1) as
k — 0, and also zero-stable, as described later in this chapter. We will begin to investigate these issues
by first proving the convergence of 1-step methods, which turn out to be zero-stable automatically.
We start with Euler’s method on linear problems, then consider Euler’s method on general nonlinear
problems and finally extend this to a wide class of 1-step methods.

77
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7.2 Linear equations and Duhamel’s principle

Much of the theory presented below is based on examining what happens when a method is applied to
a simple linear equation of the form

u'(t) = Au(t) + g(t) (7.3)
with initial data
u(to) = 1.

Here A is a constant and g(t) is a given function. In the special case g(t) = 0 (the homogeneous
equation), the solution is simply
u(t) = e’\(t_to)n.

If we let S(t,t9) = eM?~t0) be this solution operator, which maps data at time o to the solution at time
t, then we can write the solution of the more general linear problem (7.3) using Duhamel’s principle,
which states that the solution to the nonhomogeneous problem is obtained by adding to the solution
of the homogeneous problem a superposition of S(t,7)g(7) over all times 7 between to and ¢. In this
sense S(¢,7) acts like a Green’s function (compare to (2.36)). So we have

u(t) = S(tto)n+ | S(t,7)g(r)dr (7.4)

to

t
= e)‘(tft")n—f—/ e)‘(th)g(T)dT.

to

Exercise 7.1 Use (7.4) to solve the equation u'(t) = 3u(t) + 2t with u(0) = 1.

7.3 One-step methods

7.3.1 Euler’s method on linear problems

If we apply Euler’s method to the equation (7.3), we obtain

Ut = U™ + k(A\U™ + g(tn))

(7.5)
=1+ ENU™ + kg(tn).
The local truncation error for Euler’s method is given by
tn —u(ly,
- <w> — (Auty) + g(tn))
1
= <u'(tn) + §ku”(tn) + O(k2)> —u'(ty) (7.6)
1 .
= Eku”(tn) + O(k?).
Rewriting this equation as
u(tnr1) = (L4 kXNu(ty) + kg(t,) + k"
and subtracting this from (7.5) gives a difference equation for the global error E™:
E" = (14 ENE™ — k™. (7.7)

Note that this has exactly the same form as (7.5) but with a different nonhomogeneous term: 7" in
place of g(t,,). This is analogous to equation (2.15) in the boundary value theory and again gives the



R. J. LeVeque — AMath 585-6 Notes 79

relation we need between the local truncation error 7" (which is easy to compute) and the global error
E™ (which we wish to bound). Note again that linearity plays a critical role in making this connection.
We will consider nonlinear problems below.

Because the equation and method we are now considering are both so simple, we obtain an equation
(7.7) that we can explicitly solve for the global error E™. Applying the recursion (7.7) repeatedly we
see what form the solution should take:

E" = (1+kNE" !kt
= (L+EN[(1+ENE"2 — kr" %] — k!

By induction we can easily confirm that in general

E"=(1+kN"E° =k > (1+kN)" 7™ (7.8)

m=1

(Note that some of the superscripts are powers while others are indices!) This has a form that is
very analogous to the solution (7.4) of the corresponding ordinary differential equation, where now
(1 4+ kX)™™ plays the role of the solution operator of the homogeneous problem — it transforms data
at time t,, to the solution at time ¢,. The expression (7.8) is sometimes called the discrete form of
Duhamel’s principle.

We are now ready to prove that Euler’s method converges on the equation (7.3). We need only
observe that

[T+ kA < eF (7.9)
and so
(1 +kA)n—m < e(n—m)k|)\\ < 6nk|)\\ < 6\)\|T (710)

provided that we restrict our attention to the finite time interval 0 < ¢ < T, so that t, = nk < T. It
then follows from (7.8) that

|E"

IA

eMT <|E°| +k Zn: |rm—1|> (7.11)

m=1

INA

elMT <|E0| +nk max |7'm1|> .
1<m<n

Let N = T'/k be the number of time steps needed to reach time 7" and set

p— n
I17lloe = | max_ [7"].

From (7.6) we expect
1
ITllo & Skllu"lloo = O(k)

where ||u"||oo is the maximum value of the function u” over the interval [0,T]. Then for ¢t = nk < T,
we have from (7.11) that
B < NT(E| + 17l o0)-

If (7.2) is satisfied then E® — 0 as k — 0. In fact for this one-step method we would generally take
U° = u(0) = 5, in which case E° drops out and we are left with

|E"] < T |7]|oe = O(K) as k — 0 (7.12)
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and hence the method converges and is in fact first order accurate.

Note where stability comes into the picture. The one-step error £™ ! = k7™~ ! introduced in the
mth step contributes the term (1+kX)" L™~ ! to the global error. The fact that |(1+k\)" 1| < elMNT
is uniformly bounded as £ — 0 allows us to conclude that each contribution to the final error can be
bounded in terms of its original size as a one-step error. Hence the “naive analysis” of Section 6.4 is in
fact valid, and the global error has the same order of magnitude as the local truncation error.

7.3.2 Relation to stability for BVP’s

In order to see how this ties in with the definition of stability used in Chapter 2 for the boundary value
problem, it may be useful to view Euler’s method as giving a linear system in matrix form, even though

this is not the way it is used computationally. If we view the equations (7.5) forn =0, 1, ..., N -1
as a linear system AU = F for U = [U', U?%, ..., UN]T, then
_ 1 :
—(1+ kN 1
—(14+kN 1
A=l (14
k .
—(1+ kN 1
i —(14+kX) 1 |
and ) ) ) )
Ut (1/k + NU° + g(to)
U? g(t1)
U? g(t2)
U = . , F = .
UnN-t g(tn—2)
L U] L g(tn-1)

We have divided both sides of the equation (7.5) by k to conform to the notation of Chapter 2. Since
the matrix A is lower triangular, this system is easily solved by forward substitution which results in
the iterative equation (7.5).

If we now let U be the vector obtained from the true solution as in Chapter 2, then subtracting
AU = F+7 from AU = F, we obtain the equation (2.15) (the matrix form of (7.7)) with solution (7.8).
We are then in exactly the same framework as in Chapter 2. So we have convergence and a global
error with the same magnitude as the local error provided that the method is stable in the sense of
Definition 2.7.1, i.e., that the inverse of the matrix A is bounded independent of & for all k£ sufficiently
small.

The inverse of this matrix is easy to compute. In fact we can see from the solution (7.8) that

. -
( (1+kX) 1

) (14 kX)? (1+EN) 1

A7 =k (1+ kN)? (14 kX)? (1+kX) 1

RN (RN (1 RNY e (14 k) T

We easily compute using (A1.8a) that

N
A oo = kD 11+ )N
m=1
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and so
|A™ oo < kNPT = TeMT

Hence the method is stable and ||E|loc < [|[A™ oo 7]l < Te€MT||7]|oe which agrees with the bound
(7.12).

7.3.3 Euler’s method on nonlinear problems

So far we have focused entirely on linear equations. Practical problems are almost always nonlinear,
but for the initial value problem it turns out that it is not significantly more difficult to handle this
case if we assume that f(u) is Lipschitz continuous, which is reasonable in light of the discussion in
Section 6.1.

Euler’s method on ' = f(u) takes the form

Untt =un + kf(U™) (7.13)
and the truncation error is defined by
1
™ = L(ultnsr) —ultn)) = flu(ta))
= %ku”(tn) + O(k*)

just as in the linear case. So the true solution satisfies
W(tnt1) = u(tn) + kf(u(ty,)) + k7"
and subtracting this from (7.13) gives
EM = E" 4 k(f(U™) = f(u(tyn))) — kT (7.14)
In the linear case f(U") — f(u(t,)) = AE™ and we get the relation (7.7) for E™. In the nonlinear case
we cannot express f(U™) — f(u(ty,)) directly in terms of the error E™ in general. However, using the
Lipschitz continuity of f we can get a bound on this in terms of E™:
|FU") = f(u(tn))] < LIU™ = u(ts)| = LIE".
Using this in (7.14) gives
|E"F < |E"| + KLIE"| + K|7"] = (1 + KL)|E"| + k|7"| (7.15)
From this inequality we can show by induction that
n
|E"| < (14 kL) E% 4+ k Y (1+kL)"™|7™
m=1
and so, using the same steps as in obtaining (7.12), we obtain
|E"| < e!IT||7||o = O(k) as k — 0 (7.16)

for all n with nk < T, proving that the method converges. In the linear case L = |A| and this reduces
to exactly (7.12).



82 Zero-Stability and Convergence for Initial Value Problems

7.3.4 Realistic error estimates

We have proved the convergence of Euler’s method and in the process obtained a bound on the error,
(7.16), which goes to zero as k — 0. However, this bound may be totally useless in estimating the
actual error for a practical calculation.

Example 7.1. Suppose we solve u' = —10u with u(0) = 1 up to time 7' = 10 using a times step
k = 0.01. Then the solution is u(T) = e 1% ~ 3.7 x 10~*4. The computed solution is U = (.9)!% ~
2.65 x 1075 and the error is essentially the same. Since L = 10 for this problem, the error bound (7.16)
gives

IEN| < €% 10 ||7]|oo & 2.7 x 10M||7]| 0o

Here ||7]| = |7°| &~ 50k, so this upper bound on the error does go to zero as k — 0, but obviously it is
not a realistic estimate of the error, being too large by a factor of 10°° or so.

The problem is that the estimate (7.16) is based on the Lipschitz constant, which is always nonneg-
ative even when the solution curves are converging rather than diverging (see Section 6.1.4). If we were
instead solving v’ = +10u with u(0) = 1 then again L = 10 and we would get the same error estimate,
which in this case would actually be a reasonably accurate estimate. (In this case the true solution is
e'% ~ 2.7 x 10*3, so it is not surprising the absolute error is of this magnitude. The relative error is
reasonable!)

A more realistic error bound for the case where A < 0 can be obtained by writing (7.13) as

Uttt = e(U™) (7.17)

and then determining the Lipschitz constant for the function ®. (Note that if f is Lipschitz then so is
®.) Call this constant M. Then we have

w(tne1) = ®(ul(ty)) + k7
and subtracting this from (7.17) gives
E"M = @U™) — ®(u(t,)) — k1™
Taking norms and using the Lipschitz continuity of ® gives
[E"TH < MIE"| + k),
from which we obtain
|E"| < M"T||7||oc (7.18)

for all n with nk <T.
The advantage of this over (7.16) is seen for the case u' = A with A < 0. We have

D(u) = (1 + kNu,

and so
M =|1+Ek\.

In the above example, where A = —10 and k = 0.01, we obtain M = 0.9. Using this in (7.18) gives a
much more realistic error bound. The bound (7.16) was obtained by using (1+ kL) = (1+ k|)|) instead
of M =14 kA. When A > 0 the two are the same, but for A < 0 the first is always greater than 1, while
M < 1 at least for k sufficiently small. (If k£ is not sufficiently small then the numerical solution may in
fact grow exponentially with ¢ rather than decaying as it should. This form of instability is discussed
in Chapter 8.)
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7.3.5 General 1-step methods

A general explicit one-step method takes the form
Ut =U" + kO(U", t,, k) (7.19)

for some function ¥, which depends on f of course. We will assume that ¥(u, ¢, k) is continuous in ¢ and
k and Lipschitz continuous in u, with Lipschitz constant L' that is generally related to the Lipschitz
constant of f.
The method is consistent if
U (u,t,0) = f(u,t)

for all w, t. The local truncation error is

o <M) — U(ulty), t, k).

Exercise 7.2 For the 2-stage Runge-Kutta method of Example 6.15, we have

T(u,t,k) = f <u+ %kf(u)) .

Show that if f is Lipschitz continuous with Lipschitz constant L then VU has Lipschitz constant L' =
L+ 5kL?.

Using the same technique as in Section 7.3.4 we can show that any one-step methods satisfying these
conditions is convergent. We have

U(tpt1) = u(ty) + k¥ (u(ty), tn, k) + k7"
and subtracting this from (7.19) gives
E" = E" + k(O (U ty, k) — U(u(ty), tn, k) — k7™,
Using the Lipschitz condition we obtain
|E"TY < |E™| + kL'|E™| + k|T".

This has exactly the same form as (7.15) and the proof of convergence proceeds exactly as from there.

Note: In general it may be possible to obtain more realistic error bounds, as in Section 7.3.4, by
defining ®(u,t, k) = u + k¥ (u,t, k) and using the Lipschitz constant for ® rather than that for V.

7.4 Zero-stability of linear multistep methods

The convergence proof of the previous section shows that for 1-step methods, each one-step error k™!
has an effect on the global error that is bounded by e? |[k7™~!|. Although the error is possibly amplified
by a factor eX”, this factor is bounded independent of k as k — 0. Consequently the method is stable:
the global error can be bounded in terms of the sum of all the one-step errors, and hence has the
same asymptotic behavior as the local truncation error as £ — 0. This form of stability is often called
zero-stabilty in ODE theory, to distinguish it from other forms of stability that are of equal importance
in practice. The fact that a method is zero-stable (and converges as k — 0) is no guarantee that it
will give reasonable results on the particular grid with & > 0 that we want to use in practice. Other
“stability” issues of a different nature will be taken up in the next chapter.

But first we will investigate the issue of zero-stability for general linear multistep methods (LMM’s),
where the theory of the previous section does not apply directly. We begin with an example showing
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Table 7.1: Solution UY to (7.22) with U® = 0, U! = k and various values of k = 1/N.

3 4.2
10 258.4
20 | 1954408

a consistent LMM that is not convergent. Examining what goes wrong will motivate our definition of
zero-stability for LMMs.
Example 7.2. The LMM

Unt? - 3u™tt 20" = —kf(U™) (7.20)

has a local truncation error given by

1 5

E[u(tn+2) — 3u(tng1) +ulty) — ku'(t,)] = iku”(tn) + O(k?)

so the method is consistent and “first order accurate”. But in fact the global error will not exhibit
first order accuracy, or even convergence, in general. This can be seen even on the trivial initial-value

problem

u'(t) =0, u(0)=0 (7.21)
with solution u(¢) = 0. On this equation (7.20) takes the form
Unt? —3untt 420 = 0. (7.22)

We need two starting values UY and U?. If we take U® = U' = 0 then (7.22) generates U™ = 0 for all n
and in this case we certainly converge to correct solution, and in fact we get the exact solution for any
k.

But in general we will not have the exact value U' available and will have to approximate this,
introducing some error into the computation. Table 7.1 shows results obtained by applying this method
with starting data UY = 0, U' = k. Since U'(k) — 0 as k — 0, this is valid starting data in the
context of Definition 7.1.1 of convergence. If the method is convergent we should see that UY, the
computed solution at time 7" = 1, converges to zero as k — 0. Instead it blows up quite dramatically.
Similar results would be seen if we applied this method to an arbitrary equation u' = f(u) and used
any one-step method to compute U' from U°.

The homogeneous linear difference equation (7.22) can be solved explicitly for U™ in terms of the
starting values U° and U! We obtain

U =20°-U'+2MU* - UY). (7.23)

It is easy to verify that this satisfies (7.22) and also the starting values. (We’ll see how to solve general
linear difference equations in the next section.)

Since u(t) = 0, the error is E™ = U™ and we see that any initial errors in U* or U° are magnified
by a factor 2" in the global error (except in the special case U! = UY). This exponential growth of the
error is the instability which leads to nonconvergence. In order to rule out this sort of growth of errors,
we need to be able to solve a general linear difference equation.

7.4.1 Solving linear difference equations

Consider the general homogeneous linear difference equation

T
> ;U =0, (7.24)
j=0
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Eventually we will look for a particular solution satisfying given initial conditions U°, U?', ..., U" !,

but to begin with we will find the general solution of the difference equation in terms of r free parameters.
We will hypothesize that this equation has a solution of the form

Un = (n (7.25)

for some value of ¢ (here (" is the nth power!). Plugging this into (7.24) gives

r .
> " =0
=0

and dividing by (" yields
r .
> afd =0. (7.26)
j=0

We see that (7.25) is a solution of the difference equation if  satisfies the equation (7.26), i.e., if { is a
root of the polynomial

p(C) = Z a; (.
7j=0

Note that this is just the first characteristic polynomial of the LMM introduced in (6.24). In general
p(¢) has r roots (1, (2, ..., ¢ and can be factored as

p(Q) = (€= CQ)(C=C) - (= ¢).

Since the difference equation is linear, any linear combination of solutions is again a solution. If
Gy G2y -.., G aredistinet (¢; # ¢ for @ # j) then the r distinct solutions (I are linearly independent
and the general solution of (7.24) has the form

U =c1 (T + ey +- -+ el (7.27)
where ¢, ..., ¢, are arbitrary constants. In this case, every solution of the difference equation (7.24)
has this form. If initial conditions U®, U, ..., U""! are specified, then the constants ¢i, ..., ¢, can

be uniquely determined by solving the r x r linear system

cateatte, = U
G+ e+ et Ut (7.28)

afl et tegT = U
Example 7.3. The characteristic polynomial for the difference equation (7.22) is
p(Q)=2-3C+¢=((-1)(¢(~-2) (7.29)
with roots (; = 1, (s = 2. The general solution has the form
U'=¢c +cy-2"

and solving for ¢; and ¢z from U® and U? gives the solution (7.23).

This example indicates that if p(¢) has any roots that are greater than one in modulus, the method
will not be convergent. It turns out that the converse is nearly true: If all of the roots have modulus
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no greater than one, then the method is convergent, with one proviso. There must be no repeated roots
with modulus equal to one. The next two examples illustrate this.

If the roots are not distinct, say (1 = (> for simplicity, then (' and (} are not linearly independent
and the U™ given by (7.27), while still a solution, is not the most general solution. The system (7.28)
would be singular in this case. In addition to (j* there is also a solution of the form n({* and the general
solution has the form

U' =al +end + el + -+ el
If in addition (3 = (1, then the third term would be replaced by c3n?¢}*. Similar modifications are made
for any other repeated roots. Note how similar this theory is to the standard solution technique for an
r’th order linear ordinary differential equation.

Example 7.4. Applying the consistent LMM

Ut _oumtt 4 = %k( FU™2) = FU™)) (7.30)

to the differential equation u'(t) = 0 gives the difference equation
unt? —2umtt 4+ Ut = 0.
The characteristic polynomial is

p(Q)=¢C -20+1=(¢-1) (7.31)

so (; = (3 = 1. The general solution is
U™ = ¢ + con.

For particular starting values U® and U' the solution is
U =U° 4+ (U' - U%n.

Again we see that the solution grows with n, though not as dramatically as in Example 7.2 (the growth
is linear rather than exponential). But this growth is still enough to destroy convergence. If we take
the same starting values as before, U° = 0 and U! = k, then U™ = kn and so

lim UN = kN =T.
Nk

The method converges to the function v(t) = ¢ rather than to u(¢) = 0, and hence the LMM (7.30) is
not convergent.

This example shows that if p({) has a repeated root of modulus 1, then the method cannot be
convergent.

Example 7.5. Now consider the consistent LMM

5 1 1
Ut —ount? 4 ZU"“ U =70 fom). (7.32)
Applying this to (7.21) gives
Un+3 _ 2Un+2 + §Un+1 _ lU’n =0
4 4
and the characteristic polynomial is

PO = =2 + 20~ 1 = (- 1(C - 05" (7.3

So (1 =1, (2 = (3 = 1/2 and the general solution is

1\" 1\"
U =c¢1 + ¢y <§> +03n<§> .
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Here there is a repeated root but with modulus less than 1. The linear growth of n should then be
overwhelmed by the decay of (1/2)".

For this 3-step method we need three starting values UY, U', U? and we can find ¢;, ¢z, ¢3 in terms
of them by solving a linear system similar to (7.28). Each ¢; will be a linear combination of U°, U, U?
and so if U (k) — 0 as k — 0 then ¢;(k) — 0 as k — 0 also. The value U" computed at time 7" with
step size k (where kN = T') has the form

UNzcﬂk%+@G0<%>N+wBMMV<%>N. (7.34)

Now we see that
lim UM =0
k—0
Nk=T
and so the method (7.32) converges on ' = 0 with arbitrary starting values U (k) satisfying U” (k) — 0
as k — 0. (In fact this LMM is convergent in general.)

More generally, if p(¢) has a root (; that is repeated r times, then U N will involve terms of the
form NSCJN for s =1, 2, ,..., r. This converges to zero as N — oo provided |(;| < 1. The algebraic
growth of N? is overwhelmed by the exponential decay of {JN . This shows that repeated roots are not
a problem as long as they have magnitude strictly less than 1.

With the above examples as motivation, we are ready to state the definition of zero-stability.

Definition 7.4.1 An r-step Linear Multistep Method is said to be zero-stable if the roots of the
characteristic polynomial p(¢) defined by (6.24) satisfy the following conditions:
|Gl <1 for j=1,2,,...,r

(7.35)
If (; is a repeated root, then |(;| < 1.

If the conditions (7.35) are satisfied for all roots of p, then the polynomial is said to satisfy the root
condition.
Example 7.6. The Adams methods have the form

,
Untr — yntr-t + kZﬂjf(Un+j)
j=1
and hence
p(Q)=¢ =¢ = (-1
The roots are (; = 1 and (o = --- = {, = 0. The root condition is clearly satisfied and all of the
Adams-Bashforth and Adams-Moulton methods are zero stable.

The examples given above certainly do not prove that zero-stability as defined above is a sufficient
condition for convergence. We only looked at the simplest possible ODE «'(¢) = 0 and saw that things
could go wrong if the root condition is not satisfied. It turns out, however, that the root condition is all
that is needed to prove convergence on the general initial value problem (in the sense of Definition 7.1.1).
For the initial value problem we have the general result that

consistency + zero-stabilty = = convergence. (7.36)

This is the analog of the statement (2.21) for the boundary value problem. A proof of this result can
be found in [Hen62]

Note: A consistent linear multistep method always has one root equal to 1, say {; = 1, called
the principal root. This follows from (6.25). Hence a consistent 1-step LMM (such as Euler, backward
Euler, trapezoidal) is certainly zero-stable. More generally we have proved in Section 7.3.5 that any
consistent 1-step method (that is Lipschitz continuous) is convergent. Such methods are automatically
“zero-stable” and behave well as & — 0. They may have other stability problems that show up for
“large” values of k, however, which is the subject of the next chapter.
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Chapter 8

Absolute Stability for ODEs

8.1 Unstable computations with a zero-stable method

In the last chapter we investigated zero-stability, the form of stability needed to guarantee convergence
of a numerical method as the grid is refined (k — 0). In practice, however, we are not able to actually
compute this limit. Instead we typically perform a single calculation with some particular nonzero time
step k (or some particular sequence of time steps with a variable step size method). Since the expense of
the computation increases as k decreases, we generally want to choose the time step as large as possible
consistent with our accuracy requirements. How can we estimate the size of & required?

Recall that if the method is stable in an appropriate sense, then we expect the global error to
be bounded in terms of the local truncation errors at each step, and so we can often use the local
truncation error to estimate the time step needed, as illustrated below. But the form of stability now
needed is something stronger than zero-stability. We need to know that the error is well behaved for
the particular time step we are now using. It is little help to know that things will converge in the limit
“for k sufficiently small”. The potential difficulties are best illustrated with some examples.

Example 8.7. Consider the IVP

u'(t) = —sint, u(0) =1

with solution
u(t) = cost.

Suppose we wish to use Euler’s method to solve this problem up to time 7" = 2. The local truncation
error is

) = %ku”(t)+0(k2) (8.1)
= —%kcos(t)-l—O(lf)

Since the function f(¢) = —sint is independent of u, it is Lipschitz continuous with Lipschitz constant
L =0, and so the error estimate (7.12) shows that

EM LT = =k.

[E™| < Tl korél%XT|cost| k
Suppose we want to compute a solution with |[E| < 1073. Then we should be able to take k = 1073
and obtain a suitable solution after T'/k = 2000 time steps. Indeed, calculating using k = 1072 gives a

computed value U?%%0 = —0.415692 with an error E2900 = /2900 _ ¢og(2) = 0.4548 x 1073,
Example 8.8. Now suppose we modify the above equation to

u'(t) = Mu — cost) — sint (8.2)

89
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Table 8.1: Errors in the computed solution using Euler’s method in Example 8.9, for different values of
the time step k. Note the dramatic change in behavior of the error for £ < 0.000952.

k Error
0.001000 | 0.145252E+77
0.000976 | 0.588105E+36
0.000950 | 0.321089E-06
0.000800 | 0.792298E-07
0.000400 | 0.396033E-07

where A is some constant. If we take the same initial data as before, w(0) = 0, then the solution is
also the same as before, u(t) = sint. As a concrete example, let’s take A = —10. Now how small do
we need to take k in order to get an error that is 10737 Since the LTE (8.1) depends only on the true
solution u(t), which is unchanged from Example 8.7, we might hope that we could use the same k as in
that example, k = 10~2. Solving the problem using Euler’s method with this this step size now gives
U209 = —0.416163 with an error E?°%° = (0.161 x 10~*. We are again successful. In fact the error is
considerably smaller in this case than in the previous example, for reasons that will become clear later.

Example 8.9. Now consider the problem (8.2) with A = —2100 and the same data as before. Again
the solution is unchanged and so is the LTE. But now if we compute with the same step size as before,
k = 1073, we obtain U?%% = —0.2453 x 1077 with an error of magnitude 107. The computation
behaves in an “unstable” manner, with an error that grows exponentially in time. Since the method is
zero-stable and f(u,t) is Lipschitz continuous in u (with Lipschitz constant L = 2100), we know that
the method is convergent, and indeed with sufficiently small time steps we achieve very good results.
Table 8.1 shows the error at time 7' = 2 when Euler’s method is used with various values of k. Clearly
something dramatic happens between the values k¥ = 0.000976 and k& = 0.000952. For smaller values of
k we get very good results whereas for larger values of k there is no accuracy whatsoever.

The equation (8.2) is a linear equation of the form (7.3) and so the analysis of Section 7.3.1 applies
directly to this problem. From (7.7) we see that the global error E™ satisfies the recursion relation

E" = (14 kNE™ — k" (8.3)

where the local error 7 = 7(t,,) from (8.1). The expression (8.3) reveals the source of the exponential
growth in the error — in each time step the previous error is multiplied by a factor (1 + k). For the
case A = —2100 and k = 1073, we have 1 + kA = —1.1 and so we expect the local error introduced in
step m to grow by a factor of (—1.1)"~™ by the end of n steps (recall (7.8)). After 2000 steps we expect
the truncation error introduced in the first step to have grown by a factor of roughly (—1.1)2%%9 =~ 1082
which is consistent with the error actually seen.

Note that in Example 8.8 with A\ = —10, we have 1 + kA = 0.99, causing a decay in the effect of
previous errors in each step. This explains why we got a reasonable result in Example 8.8 and in fact
a better result than in Example 8.7, where 1+ kA = 1.

Returning to the case A = —2100, we expect to observe exponential growth in the error for any
value of k greater than 2/2100 = 0.00095238, since for any k larger than this we have |1 + kA| > 1. For
smaller time steps |1 + kA| < 1 and the effect of each local error decays exponentially with time rather
than growing. This explains the dramatic change in the behavior of the error that we see as we cross
the value k£ = 0.00095 in Table 8.1.

Note that the exponential growth of errors does not contradict zero-stability or convergence of the
method in any way. The method does converge as k — 0. In fact the bound (7.12),

|E"| < eMT|7]| o = O(K) as k — 0,

that we used to prove convergence, allows the possibility of exponential growth with time. The bound
is valid for all values of k, but since TelMT = 2¢1200 = 101325 while |7 = 2k, this bound does not
guarantee any accuracy whatsoever in the solution until k¥ < 107!%25! This is a good example that a
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mathematical convergence proof may be a far cry from what is needed in practice. (Though in this case
the convergence proof can be improved to give a much more realistic error bound as in Section 7.3.4.)

8.2 Absolute stability

In order to determine whether a numerical method will produce reasonable results with a given value
of £ > 0, we need a notion of stability that is different from zero-stabilty. There are a wide variety
of other forms of “stability” that have been studied in various contexts. The one which is most basic
and suggests itself from the above examples is absolute stability. This notion is based on the linear test
equation (7.3) although a study of the absolute stability of a method yields information that is typically
directly useful in determining an appropriate time step in nonlinear problems as well.

In fact we can look at the simplest case of the test problem in which g(¢t) = 0 and we have simply

u'(t) = Au(t).
Euler’s method applied to this problem gives
Uttt = (1+ kAU

and we say that this method is absolutely stable when |1 + kA| < 1, otherwise it is unstable. Note that
there are two parameters k£ and A, but is is only their product z = kX that matters. The method is
stable whenever —2 < z < 0, and we say that the interval of absolute stability for Euler’s method is
[-2,0].

It is more common to speak of the region of absolute stability as a region in the complex z plane,
allowing the possibility that A is complex (of course the time step & should be real and positive). The
region of absolute stability (or simply the stability region) for Euler’s method is the disk of radius 1
centered at the point —1, since within this disk we have |1 + kA| < 1 (see Figure 8.1a). Allowing A to
be complex comes from the fact that in practice we are typically solving a nonlinear system of ODEs.
After linearization we obtain a linear system of equations and it is the eigenvalues of the resulting
Jacobian matrix that are important in determining stability. (This is discussed in Section 8.5.3.) Hence
A represents a typical eigenvalue and these may be complex even if the matrix is real.

8.3 Stability regions for LMMs

For a general LMM of the form (6.21), the region of absolute stability is found by applying the method
to u' = Au, obtaining

Z OéjUn+j =k Z ﬂj/\UnJrj
j=0 Jj=0

which can be rewritten as
N
Z(aj — Zﬂj)Un—H =0. (84)

=0

Note again that it is only the product z = kA that is important, not the values of k£ or A separately.
Note also that this is a dimensionless quantity since the decay rate A has dimensions time™! while the
time step has dimensions of time.

The recurrence (8.4) is a homogeneous linear difference equation of the same form considered in Sec-
tion 7.4.1. The solution has the general form (7.27) where the (; are now the roots of the characteristic
polynomial Z;ZO(%— — 2f3;)¢?. This polynomial is often called the stability polynomial and denoted by
7w((;2). It is a polynomial in ¢ but its coefficients depend on the value of z. The stability polynomial
can be expressed in terms of the characteristic polynomials for the LMM as

m(¢;2) = p() = z0(0)-
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The LMM is absolutely stable for a particular value of z if errors introduced in one time step do not
grow in future time steps. According to the theory of Section 7.4.1, this requires that the polynomial
7((; z) satisty the root condition (7.35).

Definition 8.3.1 The region of absolute stability for the LMM (6.21) is the set of points z in the
complez plane for which the polynomial 7((;z) satisfies the root condition (7.35).

Note that a LMM is zero-stable if and only if the origin z = 0 lies in the stability region. This
explains the name.
Example 8.10. For Euler’s method,

m((z) =C—(1+2)

with the single root (; = 1+2. We have already seen that the stability region is the circle in Figure 8.1a.
Example 8.11. For the Backward Euler method (6.15),

m((;2)=(1—-2)¢—1
with root (; = (1 — 2)~!. We have
(1-2)Y <1l <= [1-2>1

so the stability region is the exterior of the disk of radius 1 centered at z = 1, as shown in Figure 8.1b.
Example 8.12. For the Trapezoidal method (6.16),

(i 2) = <1 - %z) - <1 + %z)

1+ 3z

= 1‘
122

with root

Q

This is known as a linear fractional transformation in complex analysis and it can be shown that
(1] €1 <= Re(2) <0

where Re(z) is the real part. So the stability region is the left half plane as shown in Figure 8.1c.
Example 8.13. For the Midpoint method (6.17),

n(G2) =~ 220 1,

The roots are (12 = z £ v2%2 + 1. It can be shown that if z is a pure imaginary number of the form
z = ia with |a| < 1, then |(1] = |(2] = 1 and (; # (s, and hence the root condition is satisfied. For
any other z the root condition is not satisfied. So the stability region consists only of the open interval
from —i to ¢ on the imaginary axis, as shown in Figure 8.1d.

Since k is always real, this means the Midpoint method is only useful on the test problem u' = Au if
A is pure imaginary. The method is not very useful for scalar problems where X is typically real, but the
method is of great interest in some applications with systems of equations. For example, if the matrix
is real but skew symmetric (A7 = —A), then the eigenvalues are pure imaginary. This situation arises
naturally in the discretization of hyperbolic partial differential equations, as discussed later.

Example 8.14. Figures 8.2 and 8.3 show the stability regions for the r-step Adams-Bashforth
and Adams-Moulton methods for various values of r. For an r-step method the polynomial 7({; z) has
degree r and there are r roots. Determining the values of z for which the root condition is satisfied does
not appear simple. However, there is an elegant technique called the boundary locus method that makes
it simple to determine the regions shown in the figures. This is briefly described in the next section (see
also Lambert[Lam?73], for example).
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Forward Euler Backward Euler

Trapezoidal Midpoint

1.5;

0.57

© -2 -1 0 1 2 @ 2 -1 0 1 2

Figure 8.1: Stability regions for (a) Euler — interior of circle, (b) Backward Euler, — exterior of circle
(¢) Trapezoidal — left half plane, and (d) Midpoint — segment on imaginary axis.
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Stability region of Adams-Bashforth 2-step method Stability region of Adams—Bashforth 3—-step method
2 i i i i i i 2 ; ; ; ; ; ;
15F 1 15¢ 1
1r 1 1f 1
0.5F 1 0.5r 1
0 0
051 1 -0.5¢ B
1t J 1t i
-15r ] -1.5¢ g
(a) %3 25 2 15 -1 05 0 05 1 (b) %3 25 2 15 1 05 0 05 1
Stability region of Adams-Bashforth 4-step method Stability region of Adams-Bashforth 5-step method
2 i i i i i i 2 ; ; ; ; ; ;
15r 1 15r 1
0.5F p 1 0.5F /_//
0 0
-05F B 1 -0.5¢ \
-1r 1 -1r \\/
-1.5¢ 1 -1.5¢ 1
) . . . . . . -2 . . . . . .

(C) -3 25 -2 -15 -1 -05 0 0.5 1 (d) -3 25 -2 -15 -1 -05 0 0.5 1

Figure 8.2: Stability regions for some Adams-Bashforth methods. The enclosed region just to the left
of the origin is the region of absolute stability. See Section 8.4 for a discussion of the other loops seen
in some figures.
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Stability region of Adams—Moulton 2-step method Stability region of Adams—Moulton 3-step method
4 T T T T T 4 T T T T T
3r 4 3+ i
2r 1 20 1
1r 1 1r 1
0 b 0 b
1t 1 1k i
oL 1 oL i
3l 1 -3l i
4l . . . . . . -4 . . . . . . .
(a) -6 -5 -4 -3 -2 -1 0 1 (b) -6 -5 -4 -3 -2 -1 0 1
Stability region of Adams—Moulton 4-step method Stability region of Adams—Moulton 5-step method
4 T T T T T 4 T T T T T
3r 1 3r 1
2r 1 2r 1
1r 4 1+ i
0 4 0 i
-1r g -1+ ]
-2r g -2+ ]
-3r g -3t j
-4 - . L - - - - -4 L L I I L L .
(C) -6 -5 -4 -3 -2 -1 0 1 (d) -6 -5 -4 -3 -2 -1 0 1

Figure 8.3: Stability regions for some Adams-Moulton methods. The stability region is interior to the
curves.
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8.4 The Boundary Locus Method

A point z €C is in the stability region S of a linear multistep method if the stability polynomial 7((; z)
satisfies the root condition for this value of z (see Chapter 8). It follows that if z is on the boundary
of the stability region then 7({;2) must have at least one root {; with magnitude exactly equal to 1.
Hence ¢ is of the form

G=e"’
for some value of 6 in the interval [0, 27] (Sorry for the two different uses of 7.) Since (; is a root of =,

we have .
m(e®:2) =0

for this particular combination of z and §. Recalling the definition of 7, this gives
p(e”) = zo(e) =0
and hence

p(e’)
o(ei?)

z =
If we know 6 then we can find z from this.

Since every point z on the boundary of S must be of this form for some value of 4 in [0, 27], we can
simply plot the parametrized curve

30) = pe”) (8.5)

for 0 < 6 < 27 to find the locus of all points which are potentially on the boundary of S. For simple
methods this yields the region S directly.
Example 8.15. For Euler’s method we have p(¢) = ( — 1 and ¢(¢) = 1, and so

2(6) = e — 1.

This function maps [0, 27] to the unit circle centered at z = —1, which is exaclty the boundary of S.

To determine which side of this curve is the interior of S, we need only evaluate the roots of 7((; 2)
at some random point z on one side or the other and see if the polynomial satisfies the root condition.
For example, at the center of the circle z = 1 we have 7((;1) = —( with root (; = 0. So = satisfies
the root condition here and this point must be in the interior. It follows easily that all other points
inside the curve must also be in the interior of S, since the roots are continuous functions of z and so
as we vary z a root can potentially move outside the unit circle only when we cross the boundary locus.
Checking the roots at a random point outside the circle shows that these points must be exterior to the
stability region.

For some methods the boundary locus may cross itself. In this case we typically find that at most
one of the regions cut out of the plane corresponds to the stability region. We can determine which
region is S by evaluating the roots at some convenient point z within each region.

Example 8.16. The 5-step Adams-Bashforth method gives the boundary locus seen in Figure 8.4.
The numbers 0, 1, 2 in the different regions indicate how many roots are outside of the unit circle in
each region, as determined by testing the roots at a random point in each region. The stability region
is the small semicircular region to the left of the origin where all roots are inside the unit circle. As we
cross the boundary of this region one root moves outside. As we cross the boundary locus into one of
the regions marked “2”, another root moves outside and the method is still unstable in these regions.

Exercise 8.1 Adapt the idea of the boundary locus method to determine the stability region of the 2-
stage Runge-Kutta method from Ezample 6.15. Note that this is also the stability region of the second
order Taylor series method.
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Stability region of Adams—Bashforth 5-step method

15F

0.5¢

-1.51

- 2 L

-2 -15

Figure 8.4: Boundary locus for the 5-step Adams-Bashforth method. The numbers indicate how many

roots are outside of the unit circle in each region. The region marked “0” is the stability region.
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8.5 Systems of equations

In this section we will look at how the stability theory carries over to systems of m differential equations.
We will see that for a linear system u' = Au + b, where A is an m x m matrix, it is the eigenvalues of
A that are important and we need kA in the stability region for each eigenvalue A\ of A. For general
nonlinear systems u' = f(u), the theory is more complicated, but a good rule of thumb is that kA
should be in the stabilty region for each eigenvalue A of the Jacobian matrix f’(u). Before discussing
this theory, we will review the theory of chemical kinetics, a field where the solution of systems of
ordinary differential equations is very important.

8.5.1 Chemical Kinetics

Let A, B, C,... represent chemical compounds and consider a reaction of the form
A% B
This represents a reaction in which A is transformed into B with rate K; > 0. If we let u; represent

the concentration of A and u» represent the concentration of B (often denoted by w1 = [A4], us = [B])
then the ODEs for u; and us are:

Ull = —K1u1
’U/IQ = Klul.

If there is also a reverse reaction at rate K>, we write

K1
A K. B
and the equations then become
u?l = _Klul + K2U2 (86)
U{Z = K1u1 — K2U2

More typically, reactions involve combinations of two or more compounds, e.g.,
K,
A+ B k. AB.

Since A and B must combine to form AB, the rate of the forward reaction is proportional to the product
of uy; and wus, while the backward reaction is proportional to uz = [AB]. The equations become

Ull = —K1U1U2 + K2U3
UI2 = —K1U1U2 + K2U3 (87)
UI3 = K1U1U2 — K2U3

Often several reactions take place simultaneously, e.g.,
K1

A+B k, AB
K3

2A+C ks AsC

If we now let uy = [C], us = [42C], then the equations are

up = —Kiujus + Kouz — 2K3uiug + 2Ku;

UIZ = —K1U1U,2 + KQU,3

UIS = K1U1U2 — K2U3 (88)
uy = —Ksuluy + Kyus

uy = KgufU4—K4u5
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concentrations

0 2 4 6 8
time

Figure 8.5: Sample solution for the kinetics problem in Example 8.17.

Interesting physical problems can give rise to very large systems of ODEs. Frequently the rate constants
K, Ko, ... are of vastly different orders of magnitude. This leads to stiff systems of equations, as
discussed in Chapter 10.

Example 8.17. One particularly simple system arises from the decay process

A5 BE o

Let u; = [A], us = [B], ug = [C]. Then the system is linear and has the form u' = Au, where

~K; 0 0
A=| K -K, 0. (8.9)
0 K, 0

Note that the eigenvalues are —K;, —K, and 0. The general solution thus has the form (assuming
K, # K»)
Uj (t) = lee_Klt + nge_K2t + Cj3.

In fact, on physical grounds (since A decays into B which decays into C), we expect that u; simply

decays to 0 exponentially,
uy () = e K1ty (0)

(which clearly satisfies the first ODE), and also that us decays to 0, while us grows and asymptotically
approaches the value u1(0) + u2(0) + u3(0) as ¢ — oc. A typical solution for K3 = 3 and K> = 1 with
u1(0) = 3, u2(0) = 4, and u3(0) = 2 is shown in Figure 8.5.

8.5.2 Linear systems

Consider a linear system v’ = Au where A is a constant m x m matrix, and suppose for simplicity that
A is diagonalizable, which means that it has a complete set of mn linearly independent eigenvectors r,
satisfying Arp, = Aprp forp=1, 2, ..., m. Let R=[r1,72,... ,7n] be the matrix of eigenvectors and
A =diag(M\1, A2, ..., Ap) be the diagonal matrix of eigenvectors. Then we have

A=RAR ' and A =R 'AR.
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Now let v(t) = R~ 'u(t). Multiplying ' = Au by R™! on both sides and introducing I = RR™! gives
the equivalent equations
R7W/'(t) = (RT*AR)(R™u(t)),

ie.,

v'(t) = Av(t).

This is a diagonal system of equations that decouples into m independent scalar equations, one for each
component of v. The pth such equation is

v, (1) = Apup(t).

A Linear Multistep Method applied to the linear ODE can also be decoupled in the same way. For
example, if we apply Euler’s method, we have

Uttt = U™ + kAU
which, by the same transformation, can be rewritten as
Vil =y 4 gAYV

where V™ = R~1U". This decouples into m independent numerical methods, one for each component
of V™. These take the form
Vit = (14 k) V)

We can recover U™ from V" from U™ = RV™.

The overall method is stable if each of the scalar problems is stable, and this clearly requires that
kA, be in the stability region of Euler’s method for all values of p. The same technique can be used
more generally to show that a LMM is absolutely stable if kA, is in the stability region of the method
for each eigenvalue A, of the matrix A.

Example 8.18. Consider the linear kinetics problem with A given by (8.9). Since this matrix is
upper triangular, the eigenvalues are the diagonal elements A\; = —K3, Ay = —K>5, and A3 = 0. The
eigenvalues are all real and the Euler’s method is stable provided kmax(K;, K») < 2.

Example 8.19. Consider a linearized model for a swinging pendulum, this time with frictional
forces added,

0"(t) = —ab(t) — bo'(t)

which is valid for small values of . If we introduce u; = 6 and uy; = 6’ then we obtain a first order
system u' = Au with

A:[ 0 1}. (8.10)

—a —b

The eigenvalues of this matrix are A = 1 (=b £ /b — 4a). Note in particular that if b = 0 (no damping)
then A = +£y/—a are pure imaginary. For b > 0 the eigenvalues shift into the left half plane. In the
undamped case the Midpoint method would be a reasonable choice, whereas Euler’s method might be
expected to have difficulties. In the damped case the opposite is true.

8.5.3 Nonlinear systems

Now consider a nonlinear system u' = f(u). The stability analysis we have developed for the linear
problem does not apply directly to this system. However, if the solution is slowly varying relative to the
time step, then over a small time interval we would expect a linearized approximation to give a good
indication of what is happening. Suppose the solution is near some value @, and let v(t) = u(t) — a.
Then

v'(t) = () = f(u(t) = f(o(t) + ).
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Taylor series expansion about @ (assuming v is small) gives
V'(t) = f@) + f'(@)o(t) + O(v?).
Dropping the O(v?) terms gives a linear system
v'(t) = Av(t) + b

where A = f'(u) is the Jacobian matrix evaluated at @ and b = f(#). Examining how the numerical
method behaves on this linear system (for each relevant value of @) gives a good indication of how it
will behave on the nonlinear system.

Example 8.20. Consider the kinetics problem (8.7). The Jacobian matrix is

—K1U2 —K1U1 K2
A= —K1U2 —K1U1 K2
K1U2 K1U1 —K2

with eigenvalues A\ = —K1(u1 + u2) — Ko and Ay = A3 = 0. Since uq + us is simply the total quantity
of species A and B present, this can be bounded for all time in terms of the initial data. (For example,
we certainly have u (t) + u2(t) < u1(0) + u2(0) + 2u3(0).) So we can determine the range of A; along
the negative real axis and hence how small & must be to stay within the region of absolute stability.

8.6 Choice of stepsize

As the examples at the beginning of this chapter illustrated, in order to obtain computed results that
are within some error tolerance, we need two conditions satisfied:

1. The time step k& must be small enough that the local truncation error is acceptably small. This
gives a constraint of the form k < kacc that depends on several things:

e What method is being used, which determines the expansion for the local truncation error.

e How smooth the solution is, which determines how large the high order derivatives occuring
in this expansion are.

e What accuracy is required.

2. The time step k must be small enough that the method is absolutely stable on this particular
problem. This gives a constraint of the form k < kg .1, that depends on the size of A or, more
generally, the eigenvalues of the Jacobian matrix f'(u).

Typically we would like to choose our time step based on accuracy considerations. For a given
method and problem, we would like to choose k so that the local error in each step is sufficiently small
that the accumulated error will satisfy our error tolerance, assuming some “reasonable” growth of errors.
If the errors grow exponentially with time because the method is not absolutely stable, however, then
we would have to use a smaller time step in order to get useful results.

If stability considerations force us to use a much smaller time step than the local truncation error
indicates should be needed, then this particular method is probably not optimal for this problem. We
then have a “stiff” problem as discussed in Chapter 10, for which special methods have been developed.
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Chapter 9

Linear Multistep Methods as 1-step
Methods

A linear multistep method can be written in the form of a one-step method applied to a system of
equations. Doing so allows us to see how studying absolute stability via the roots of the characteristic
polynomial is related to studying the matrix iterations via the eigenvalues of the matrix. Moreover
we can see how the condition of zero-stability leads to a convergence proof similar to the proof of
convergence of a one-step method seen in Chapter 7.

For simplicity we will only consider ezplicit methods applied to the linear problem u'(t) = Au(t)+¢g(t),
for which a general r-step method has the form

r r—1
Z OéjUn+j = kZﬂj [/\Un+j + g(tn+j)] . (91)
Jj=0 Jj=0
We can assume without loss of generality that «, = 1, since there is one degree of freedom in the

coefficients because we can multiply both sides of (9.1) by an arbitrary constant without changing the
numerical method. Then we can solve for U™*" as

r—1
U™ =S (~aj + kAB)U™ + kBig(tass))-
7=0
Let v; = —a; + kAB; and define the vector V™ by
U yntt
ot Unt2
vn = . , so that vt =
Un-+:r—1 U'r;—i—r

fU” e IR,S was already a vector for a system of s equations, then V" € IR,TS is a longer vector.) With
g
this notation we see that V" is updated by a 1—step method

VL = AV 4+ kD"

where _ } i}
0 1 0 0 0 ( 0
0 0 1 0 0 0
A= . b=
0 o --- 1 0
. et | S Bl |

103
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Note that we know the initial vector V° from the starting values UY ..., U™ ! needed for the r-step
method.
In the usual way, we find that the error vector E™ satisfies

E" = AB" — k™,

where
0
0
o= :
0
T(tngr)
and hence
n
E"=A"E’ -k Y _ A" el (9.2)
m=1

(Here the superscripts on E and 7 are time indices while the superscripts on A are powers.)

9.1 Absolute stability

First let’s consider the question of absolute stability. How does the error behave as we march forward
in time with some fixed k7 We want the effect of past errors to not be amplified in future steps, so
we want a uniform bound on ||A™||. A necessary condition is that the spectral radius of A msut be no
larger than 1. If A is diagonalizable then this is also a sufficient condition.
The eigenvalues p of A satisfy
det(A — pul) =0.

It is easy to verify that this determinant is simply

p= e T = = = .

Recalling that ;. = 1 and 8, = 0, we see that this is exactly the “stability polynomial” 7 (u; k) defined
in Chapter 8. So for stability we require that the roots of this polynomial (which are the eigenvalues of
A) be no larger than 1 in modulus. The matrix A is called the companion matriz for this polynomial.

Moreover, it turns out that if 7 has a repeated root, which is then a multiple eigenvalue of A, that A
is not diagonalizable — it is defective and has a nontrivial Jordan block. If this eigenvalue has modulus
equal to 1 then ||A"™|| will grow with n. Hence for stability we must also require that any multiple root
have modulus strictly less than 1.

The upshot is that the condition required for uniform boundedness of ||A"| is exactly the
condition” on the stability polynomial 7, i.e., absolute stability of the method.

“root

9.2 Convergence and zero-stability

Now let’s examine the question of convergence as k — 0. Looking again at (9.2), and following the proof
in Section 7.3, we see that the method converges if ||7" ||« — 0 (consistency), |E°|| — 0 (good starting
values), and ||A™| is uniformly bounded as k& — 0 for nk < T (which we will see requires exactly the
conditions of zero-stability). In the case of a 1-step method, A was a scalar bounded by 1 + L'k, and
hence A" < e'" could be uniformly bounded.

Note that we are looking for something different than the uniform boundedness of the previous
section. Rather than looking at how A™ behaves as n — oo with k fixed, we are examining what
happens as k — 0 and n — oo simultaneously with nk = T fixed. To make this clearer, let’s now write
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the matrix as Ay to remind ourselves that it depends on k. As k — 0 the value ~y; in the last row of
Ay approaches —a;. It can be shown that ||A7| is uniformly bounded for all n and k with nk < T
provided the eigenvalues of the limiting matrix Ao are no greater than 1 in modulus (and striclty less
than 1 for multiple eigenvalues). The determinant of Ay — ul is just the characteristic polynomial
pp) = >"_y ajp?, and so this is just the zero-stability condition.

The proof of this statement follows from the fact that the eigenvalues of a matrix are continuous
functions of the matrix elements, and moreover that modifying the elements by O(k) leads to an O(k)
perturbation of the eigenvalues (in the nondefective case). Hence if the characteristic polynomial p
satisfies the root condition then the matrix Aj for £ > 0 has spectral radius that can be bounded
by 1+ Ck for some constant C, and hence the n’th power can be bounded by some constant times
(14 Ck)™ < "] just as in the case of a scalar 1-step method.
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Chapter 10

Stiff ODEs

The problem of stiffness leads to computational difficulty in many practical problems. The classic
example is the case of a stiff ordinary differential equation that we will examine in this chapter. In
general a problem is stiff if, roughly speaking, we are attempting to compute a particular solution that is
smooth and slowly varying (relative to the time interval of the computation), but in a context where the
nearby solution curves are much more rapidly varying. In other words if we perturb the solution slightly
at any time, the resulting solution curve through the perturbed data has rapid variation. Typically this
takes the form of a short lived “transient” response that moves the solution back towards a smooth
solution.
Example 10.1. Consider the ODE (8.2) from the previous chapter,

u'(t) = Mcost —u) — sint. (10.1)

One particular solution is the function u(t) = cost, and this is the solution with the initial data u(0) =1
considered previously. This smooth function is a solution for any value of A. If we consider initial data
of the form u(tg) = 1 that does not lie on this curve, then the solution through this point is a different
function, of course. However, if A < 0 (or Re(\) < 0 more generally), this function approaches cost
exponentially quickly, with decay rate A. It is easy to verify that the solution is

u(t) = e*) (5 — cos(ty)) + cost. (10.2)

Figure 10.1 shows a number of different solution curves for this equation with different choices of ¢y and
1, with the fairly modest value A = —1. Figure 10.1b shows the corresponding solution curves when
A= -10.

In this scalar example, when we perturb the solution at some point it quickly relaxes towards the
particular solution u(t) = cost. In other stiff problems the solution might move quickly towards some
different smooth solution, as seen in the next example.

Example 10.2. Consider the kinetics model A — B — C developed in Example 8.17. The
system of equations is given by (8.9). Suppose that K; > K, so that a typical solution appears as
in Figure 10.2(a). (Here K; = 20 and K, = 1. Compare this to Figure 8.5.) Now suppose at time
t = 1 we perturb the system by adding more of species A. Then the solution behaves as shown in
Figure 10.2(b). The additional A introduced is rapidly converted into B (the fast transient response)
and then slowly from B into C'. After the rapid transient the solution is again smooth, though it differs
from the original solution since the final asymptotic value of C' must be higher than before by the same
magnitude as the amount of A introduced.

10.1 Numerical Difficulties

Stiffness causes numerical difficulties because any finite difference method is constantly introducing
errors. The local truncation error acts as a perturbation to the system that moves us away from the
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Figure 10.1: Solution curves for the ODE (10.1) for various initial values. (a) With A = —1. (b) With
A = —10 and the same set of initial values.
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Figure 10.2: Solution curves for the kinetics problem in Example 8.17, with K7 = 20 and K, = 1. In
(b) a perturbation has been made by adding one unit of species A at time ¢ = 1.
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Figure 10.3: Solution curves for the kinetics problem in Example 8.17, with K; = 10% and Ky = 1. In
(b) a perturbation has been made by adding one unit of species A at time ¢ = 1.
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smooth solution we are trying to compute. Why does this cause more difficulty in a stiff system than in
other systems? At first glance it seems like the stiffness should work to our advantage. If we are trying
to compute the solution u(t) = cost to the ODE (10.1) with initial data «u(0) = 1, for example, then
the fact that any errors introduced decay exponentially should help us. The true solution is very robust
and the solution is almost completely insensitive to errors made in the past. In fact this stability of the
true solution does help us, as long as the numerical method is also stable. (Recall that the results in
Example 8.8 were much better than in Example 8.7.)

The difficulty arises from the fact that many numerical methods, including all explicit methods, are
unstable (in the sense of absolute stability) unless the time step is small relative to the time scale of the
rapid transient, which in a stiff problem is much smaller than the time scale of the smooth solution we are
trying to compute. In the terminology of the previous chapter, this means that kg, < kacc. Although
the true solution is smooth and it seems that a reasonably large time step would be appropriate, the
numerical method must always deal with the rapid transients introduced in every time step and may
need a very small time step to do so stably.

10.2 Characterizations of stiffness

A stiff ODE can be characterized by the property that f’(u) is much larger (in absolute value or norm)
than u'(¢). The latter quantity measures the smoothness of the solution being computed, while f'(u)
measures how rapidly f varies as we move away from this particular solution. Note that stiff problems
typically have large Lipschitz constants too.

For systems of ODE’s, stiffness is sometimes defined in terms of the “stiffness ratio” of the system,
which is the ratio

max | A\p|
min |\ |

over all eigenvalues of the Jacobian matrix f'(u). If this is large then there is a large range of time
scales present in the problem, a necessary component for stiffness to arise. While this is often a useful
quantity, one should not rely entirely on this measure to determine whether a problem is stiff.

For one thing, it is possible even for a scalar problem to be stiff (as we have seen in Example 10.1),
even though for a scalar problem the stiffness ratio is always 1 since there is only one eigenvalue. There
can still be more than one time scale present. In (10.1) the fast time scale is determined by A, the
eigenvalue, and the slow time scale is determined by the inhomogeneous term sin(¢). For systems of
equations there may also be additional time scales arising from inhomogeneous forcing terms or other
time-dependent coefficients that are distinct from the scales imposed by the eigenvalues.

It is also important to note that a system of ODEs which has a large “stiffness ratio” is not necessarily
stiff! If the eigenvalue with large amplitude lies close to the imaginary axis, then it leads to highly
oscillatory behavior in the solution rather than rapid damping. If the solution is rapidly oscillating
then it will probably be necessary to take small time steps for accuracy reasons and kacc may be
roughly the same magnitude as kq,}, even for explicit methods.

Finally, note that a particular problem may be stiff over some time intervals and nonstiff elsewhere.
In particular, if we are computing a solution that has a rapid transient, such as the kinetics problem
shown in Figure 10.3(a), then the problem is not stiff over the initial transient period where the true
solution is as rapidly varying as nearby solution curves. Only for times greater than 10~% or so does
the problem become stiff, once the desired solution curve is much smoother than nearby curves.

For the problem shown in Figure 10.3(b), there is another time interval just after ¢ = 1 over which
the problem is again not stiff since the solution again exhibits rapid transient behavior and a small time
step would be needed on the basis of accuracy considerations.
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10.3 Numerical methods for stiff problems

Over time intervals where a problem is stiff, we would like to use a numerical method that has a large
region of absolute stability, extending far into the left-half plane. The problem with a method like
Euler’s method, with a stability region that only extends out to Re(\) = —2, is that the time step k
is severely limited by the eigenvalue with largest magnitude, and we need to take k = 2/|Amax|- Over
time intervals where this fastest time scale does not appear in the solution, we would like to be able to
take much larger time steps. For example, in the problems shown in Figure 10.3, where K; = 106, we
would need to take k =~ 2 x 1075 with Euler’s method, requiring 4 million time steps to compute over
the time interval shown in the Figure, even though the solution is very smooth over most of this time.

An analysis of stability regions shows that there are basically two different classes of LMM’s: those
for which the stability region is bounded and extends distance O(1) from the origin, such as Euler’s
method, the Midpoint method, or any of the Adams methods (see Figure 8.1 and Figure 10.5), and
those for which the stability region is unbounded, such as Backward Euler or trapezoidal. Clearly the
first class of methods are inappropriate for stiff problems.

Unfortunately, all explicit methods have bounded stability regions and hence are inefficient on stiff
problems. Some implicit methods also have bounded stability regions, such as the Adams-Moulton
methods.

10.3.1 A-stability

It seems like it would be optimal to have a method whose stability region contains the entire left half
plane. Then any time step would be allowed, provided that all the eigenvalues have negative real parts
as is often the case in practice. The Backward Euler and Trapezoidal methods have this property, for
example. A method with this property is said to be A-stable. Unfortunately, a theorem of Dahlquist
states that any A-stable LMM is at most second order accurate, and in fact the Trapezoidal method is
the A-stable method with smallest truncation error[Hen62]. Higher order A-stable implicit Runge-Kutta
methods do exist, but are more difficult to apply[But87].

10.3.2 L-stability

Notice a major difference between the stability regions for Trapezoidal and Backward Euler: the Trape-
zoidal method is stable only in the left half plane, whereas Backward Euler is also stable over much of
the right half plane. Recall that the root of the stability polynomial for Backward Euler is ¢; = (1—2) L.
This approaches 0 as |z| — oo in any direction in the complex plane. The point at infinity (on the Rie-
mann sphere, in the sense of complex analysis) is in the interior of the stability region for the Backward
Euler method.

For the Trapezoidal method, on the other hand,

143z

G=1

’
z

=

which approaches 1 in modulus as |z| — oco. It is less than 1 in modulus in the left half plane but
greater than 1 in the right half plane. The point at infinity is on the boundary of the stability region
for this method.

For a general linear multistep method, the roots of the stability polynomial

m(¢;2) = p(¢) — z0(C)
are the same as the roots of 1 1
“n(G2) = ~p(Q) = 0(Q)

and should behave like the roots of o(¢) as |z| — co. (This is actually true only for implicit methods.
What happens for an explicit method?) For Backward Euler the root of o is at 0, while for Trapezoidal
the root is at 1.
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A method is called L-stable if the roots of o are strictly inside the unit circle, |(j| < 1. For an
L-stable method the point at infinity is in the interior of the stability region.

If we are solving a stiff equation with initial data such that the solution is smooth from the beginning
(no rapid transients), or if we plan to compute rapid transients accurately by taking suitably small time
steps in these regions, then it may be fine to use a method such as the Trapezoidal Rule that is not
L-stable.

However, in some situations there are rapid transients in the solution that we are not interested in
resolving accurately with very small time steps. For these transients we want more than just stability
— we want them to be effectively damped in a single time step since we are planning to use at time
step that is much larger than the true decay time of the transient. For this purpose an L-stable method
is crucial. This is best illustrated with an example.

Example 10.3. Again consider the problem u'(t) = A(u(t) — cos(t)) — sin(¢) with A = —10° and
let’s see how Trapezoidal and Backward Euler behave in two different situations.

Case 1: Take data u(0) = 1, so that u(t) = cos(t) and there is no initial transient. Then both
Trapezoidal and Backward Euler behave reasonably and the trapezoidal method gives smaller errors

since it is second order accurate. The following table shows the errors at 7" = 3 with various values of
k.

k Backw. Euler Trapezoidal
4.0000e-01 4.7770e-02  4.7770e-02
2.0000e-01 9.7731e-08 4.7229e-10
1.0000e-01 4.9223e-08 1.1772e-10
5.0000e-02 2.4686e-08  2.9409e-11
2.5000e-02 1.2360e-08 7.3508e-12
1.2500e-02 6.1837e-09  1.8373e-12
6.2500e-03 3.0928e-09 4.6030e-13
3.1250e-03 1.5466e-09 1.1757e-13

Case 2: Now take data «(0) = 1.5 so there is an initial rapid transient towards u = cos(t) on a
time scale of about 10~%. Both methods are still absolutely stable, but the results in the next table
show that Backward Euler works much better in this case.

k Backw. Euler Trapezoidal
4.0000e-01 4.7770e-02 4.5219e-01
2.0000e-01 9.7731e-08  4.9985e-01
1.0000e-01 4.9223e-08  4.9940e-01
5.0000e-02 2.4686e-08 4.9761e-01
2.5000e-02 1.2360e-08 4.9049e-01
1.2500e-02 6.1837e-09 4.6304e-01
6.2500e-03 3.0928e-09 3.6775e-01
3.1250e-03 1.5466e-09 1.4632e-01

To understand what is happening, see Figure 10.4, which shows the true and computed solutions with
each method if we use £ = 0.1. The trapezoidal method is stable and the results stay bounded, but

1
—L_i’lzi = —.99996 ~ —1 and the initial deviation from the smooth curve cos(t)
2

is essentially negated in each time step.

since kA = —10° we have
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Figure 10.4: Comparison of (a) Trapezoidal method and (b) Backward Euler on a stiff problem with
an initial transient (Case 2 of Example 10.3).

Backward Euler, on the other hand, damps the deviation very effectively in the first time step, since
ﬁ ~ —107%. This is the proper behavior since the true rapid transient decays in a time period much
shorter than a single time step.

10.4 BDF Methods

One class of very effective methods for stiff problems are the BDF methods (Backward Differentiation
Formulas). These were first used by Curtis and Hirschfelder[CH52] but are often referred to as Gear’s
methods since he wrote one of the first software packages for stiff problems based them.

These methods result from taking o(¢) = (,¢", which has all its roots at the origin, resulting in an
L-stable method. The method thus has the form

aoU™" + U™ + o 4 @, U™ = kB, f(U™TT), (10.3)

with 8y = 81 = -+ = -1 = 0. Since f(u) = ', this form of method can be derived by approximat-
ing u'(tn4r) by a backward difference approximation based on u(t,+,) and r additional points going
backwards in time.

It is possible to derive an r-step method that is r’th order accurate. The 1-step BDF method is
simply the Backward Euler method, U™ = U™ + kf(U™*!), which is first order accurate. The next
few are:

r=2: 3U"?—4U"t U™ = 2kf(U™T?)
r=3: 110" — 18U + QU™ —2U™ = 6k f(U™1?)

others can be found in Gear[Gea71] or Lambert[Lam?73].

These methods have the proper behavior on eigenvalues for which Re(\) is very negative, but of
course we also have other eigenvalues for which z = kX is closer to the origin, corresponding to the
active time scales in the problem. So deciding its suitability for a particular problem requires looking
at the full stability region. These are shown in Figure 10.5 for several values of r.

In particular, we need to make sure that the method is zero-stable. Otherwise it would not be
convergent. This is not guaranteed from our derivation of the methods, since zero-stability depends
only on the polynomial p({), whose coefficients a; are determined by considering the local truncation
error and not stability considerations. It turns out that the BDF methods are zero-stable only for » < 6.
Higher order BDF methods cannot be used in practice.
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Stability region of 2—step BDF method Stability region of 3—step BDF method
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Figure 10.5: Stability regions for some BDF methods. The stability region is the exterior of the curves.
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Chapter 11

Some basic PDEs

In this chapter we will briefly develop some of the basic PDEs that will be used to illustrate the
development of numerical methods. In solving a partial differential equation, we are looking for a
function of more than one variable that satisfies some relations between different partial derivatives.

11.1 Classification of differential equations

First we review the classification of differential equations into elliptic, parabolic, and hyperbolic equa-
tions. Not all PDE’s fall into one of these classes, by any means, but many important equations that
arise in practice do. These classes of equations model different sorts of phenomena, display differ-
ent behavior, and require different numerical techniques for their solution. Standard texts on partial
differential equations such as Kevorkian[Kev90] give further discussion.

11.1.1 Second-order equations

In most elementary texts the classification is given for a linear second-order differential equation in two
independent variables of the form

AUge + DUgy + Clyy + dug + euy + fu=g.
The classification depends on the sign of the discriminant,

<0 — elliptic
b2 —4ac{ =0 — parabolic
>0 — hyperbolic

and the names arise by anology with conic sections. The canonical example are the Poisson problem
Ugg +Uyy = g for an elliptic problem, the heat equation u; = Bug, (with 8 > 0) for a parabolic problem,
and the wave equation usy = c*ug, for a hyperbolic problem. In the parabolic and hyperbolic case ¢
is used instead of y since these are typically time-dependent problems. These can all be extended to
more space dimensions. These equations describe different types of phenomena and require different
techniques for their solution (both analytically and numerically), and so it is convenient to have names
for classes of equations exhibiting the same general features. There are other equations that have some
of the same features and the classification scheme can be extended beyond the second-order linear form
given above. Some hint of this is given in the next few sections.

11.1.2 Elliptic equations

The classic example of an elliptic equation is the Poisson problem

Vu = f, (11.1)
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where V? is the Laplacian operator and f is a given function of # in some spatial domain . We seek a
function u (&) in Q satisfying (11.1) together with some boundary conditions all along the boundary
of 2. Elliptic equations typically model steady-state or equilibrium phenomena, and so there is no
temporal dependence. Elliptic equations may also arise in solving time-dependent problems if we are
modeling some phenomena that are always in local equilibrium and equilibrate on time scales that are
much faster than the time scale being modeled. For example, in “incompressible” flow the fast acoustic
waves are not modeled and instead the pressure is computed by solving a Poisson problem at each time
step which models the global effect of these waves.

Elliptic equations give boundary value problems (BVP’s) where the solution at all points must be
simultaneously determined based on the boundary conditions all around the domain. This typically
leads to a very large sparse sytem of linear equations to be solved for the values of U at each grid
point. If an elliptic equation must be solved in every time step of a time-dependent calculation, as in
the examples above, then it is crucial that these systems be solved as efficiently as possible.

More generally, a linear elliptic equation has the form

Lu = f, (11.2)

where L is some elliptic operator. This notion will not be discussed further here, but the idea is that
mathematical conditions are required on the differential operator L which insure that the boundary
value problem has a unique solution.

11.1.3 Parabolic equations

If L is an elliptic operator then the time-dependent equation
u=Lu—f (11.3)

is called parabolic. If L = V? is the Laplacian, then (11.3) is known as the heat equation or
diffusion equation and models the diffusion of heat in a material, for example.

Now u(Z, t) varies with time and we require initial data u(Z,0) for every & € () as well as boundary
conditions around the boundary at each time ¢ > 0. If the boundary conditions are independent of
time, then we might expect the heat distribution to reach a steady state in which u is independent of
t. We could then solve for the steady state directly by setting u; = 0 in (11.3), which results in the
elliptic equation (11.2).

Marching to steady state by solving the time-dependent equation (11.3) numerically would be one
approach to solving the elliptic equation (11.2), but this is typically not the fastest method if all we
require is the steady state.

11.1.4 Hyperbolic equations

Rather than discretizing second order hyperbolic equations such as the wave equation uy = cug,, we
will consider a related form of hyperbolic equations known as first-order hyperbolic systems. The linear
problem in one space dimension has the form

ug + Au, =0 (11.4)

where u(z,t) € R™ and A is an m X m matrix. The problem is called hyperbolic if A has real
eigenvalues and is diagonalizable, i.e., has a complete set of linearly independent eigenvectors. These
conditions allow us to view the solution in terms of propagating waves, and indeed hyperbolic systems
typically arise from physical processes that give wave motion or advective transport.

The simplest example of a hyperbolic equation is the constant-coefficient advection equation

ut + aug, =0, (11.5)
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where u is the advection velocity. The solution is simply u(z,t) = u(x — at, 0), so any u profile simply
advects with the flow at velocity a.

As a simple example of a linear system, the equations of linearized acoustics arising from elasticity
or gas dynamics can be written as a first-order system of two equations in one space dimension as

{§]t+[1/0po KE)OHZL:O (11.6)

in terms of pressure and velocity perturbations, where pg is the background density and kg is the “bulk
modulus” of the material. Note that if we differentiate the first equation with respect to ¢, the second
with respect to x, and then eliminate u;; = us, we obtain the second-order wave equation for the
pressure:

Dt = c2pww7
where
c=/ko/p

is the speed of sound in the material.

11.2 Derivation of PDEs from conservation principles

Many physically relevant partial differential equations can be derived based on the principle of con-
servation. We can view u(z,t) as a concentration or density function for some substance or chemical
that is in dilute suspension in a liquid, for example. Basic equations of the same form arise in many
other applications, however. The material presented here is meant to be a brief review, and much more
complete discussions are available in many sources. See, for example, [Kev90],[Whi74].

A reasonable model to consider in one space dimension is the concentration or density of a contam-
inant in a stream or pipe, where the variable = represents distance along the pipe. The concentration
is assumed to be constant across any cross-section, so that its value varies only with x. The density
function u(x,t) is defined in such a way that integrating the function u(x,t) between any two points x;
and x5 gives the total mass of the substance in this section of the pipe at time ¢:

T2
Total mass between x; and 5 at time ¢t = / u(z,t) dz.
z1

The density function in measured in units such as grams/meter. (Note that this u really represents
the integral over the cross section of the pipe of a density function that is more properly measured in
grams/meter?.)

The basic form of differential equation that models many physical processes can be derived in the
following way. Consider a section z; < £ < z» and the manner in which f;lz u(z,t) dr changes with
time. This integral represents the total mass of the substance in this section, so if we are studying a
substance which is neither created nor destroyed within this section, then the total mass within this
section can change only due to the flux or flow of particles through the endpoints of the section at x;
and zo. This flux is given by some function f which, in the simplest case, depends only on the value of
u at the corresponding point.

11.3 Advection

If the substance is simply carried along (advected) in a flow at some constant velocity a, then the flux
function is

flu) = au. (11.7)
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The local density u(z,t) (in grams/meter, say) multiplied by the velocity (in meters/sec, say) gives the
flux of material past the point z (in grams/sec).
Since the total mass in [z1, z2] changes only due to the flux at the endpoints, we have

T2

@i/, u(z,t) de = f(u(z1,1)) = f(u(e,1).

The minus sign on the last term comes from the fact that f is, by definition, the flux to the right.
If we assume that v and f are smooth functions, then this equation can be rewritten as

T2 a

d [**
E/M u(x, t) de = o (u(x,t)) de,

1
or, with some further modification, as
z2
/gc1 [%u(az,t) + ;—x (u(a:,t))] dz = 0.

Since this integral must be zero for all values of x; and -, it follows that the integrand must be
identically zero. This gives, finally, the differential equation

2u(:n,t) + %f(u(:n,t)) =0. (11.8)

This form of equation is called a conservation law. (For further discussion see [Lax72], [LeV90], [Whi74].)
For the case considered in Section 11.3, f(u) = au with a constant and this equation becomes

u + aug = 0. (11.9)

This is called the advection equation.

This equation requires initial conditions and possibly also boundary conditions in order to determine
a unique solution. The simplest case is the Cauchy problemn on —co < x < oo (with no boundary), also
called the pure initial value problem. Then we only need to specify initial data

u(z,0) = n(z). (11.10)

Physically, we would expect the initial profile of n to simply be carried along with the flow at speed a,
so we should find

u(z,t) = n(z — at). (11.11)

It is easy to verify that this function satisfyies the advection equation (11.9) and is the solution of the
PDE.
The curves
T =x9+at

through each point zy at time 0 are called the characteristics of the equation. If we set
U(t) = u(zo + at, t)
then

U'(t) = aug(zo+ at,t) +u(xo + at,t)
0

using (11.9). Along these curves the PDE reduces to a simple ODE U’ = 0 and the solution must be
constant along each such curve, as is also seen from the solution (11.11).
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11.4 Diffusion

Now suppose that the fluid in the pipe is not flowing, and has zero velocity. Then according to the
above equation, u; = 0 and the initial profile n(z) does not change with time. However, if 7 is not
constant in space then in fact it will tend to slowly change due to molecular diffusion. The velocity a
should really be thought of as a mean velocity, the average velocity that the roughly 102 molecules in
a given drop of water have. But individual molecules are bouncing around in different directions and
so molecules of the substance we are tracking will tend to get spread around in the water, as a drop
of ink spreads. There will tend to be a net motion from regions where the density is large to regions
where it is smaller, and in fact it can be shown that the flux (in 1D) is proportional to —u,. The flux
at a point z now depends on the value of u, at this point, rather than on the value of u, so we write

fug) = —Buy,
where § is the diffusion coefficient. Using this flux in (11.8) gives
Ut = Pugg (11.12)

which is known as the diffusion equation. It is also called the heat equation since heat diffuses in much
the same way. In this case we can think of the one-dimensional equation as modeling the conduction
of heat in a rod. The heat conduction coefficient 5 depends on the material and how well it conducts
heat. The variable u is then the temperature.

In some problems the diffusion coefficient may vary with z, for example in a rod made of a composite
of different materials. Then f = —f(x)u, and the equation becomes

up = (B(2)tz)e-

Returning to the example of fluid flow, more generally there would be both advection and diffusion
occuring simultaneously. Then the flux is f(u,u,) = au — Bu,, giving the advection-diffusion equation

U + aty = By, (11.13)

The diffusion and advection-diffusion equations are examples of the general class of PDEs called
parabolic.

11.5 Source terms

In some situations fff u(z,t) dz changes due to effects other than flux through the endpoints of the
section, if there is some source or sink of the substance within the section. Denote the density function
for such a source by v (z,t). (Negative values of ¢ correspond to a sink rather than a source.) Then
the equation becomes

%/wl u(z,t)dz = ’

This leads to the PDE

z2

90 (u(z,t)) dz + /3:2 Y(x,t)dt.

1

ug(@,t) + flu(z, b)), = P(x,t). (11.14)

For example, if we have heat conduction in a rod together with an external source of heat energy
distributed along the rod with density v, then we have

up = Bugq + 1.

In some cases the strength of the source may depend on the value of u. For example, if the rod is
immersed in a liquid that is held at constant temperature ug, then the flux of heat into the rod at the
point (x,t) is proportional to ug — u(x,t) and the equation becomes

ug(2,t) = Buge(z,t) + aug — u(z, t)).
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11.5.1 Reaction-diffusion equations

One common form of source terms arises from chemical kinetics. If the components of u € R™ represent
concentrations of m different species reacting with one another, then the kinetics equations have the
form u; = v¥(u), as described in Section 8.5.1. This assumes the different species are well-mixed at all
times and so the concentrations vary only with time. If there are spacial variations in concentrations,
then these equations may be combined with diffusion of each species. This would lead to a system of
reaction-diffusion equations of the form

w = PBuge + Y (u). (11.15)

The diffusion coefficient could be different for each species, in which case § would be a diagonal matrix
instead of a scalar. Advection terms might also be present if the reactions are taking place in a flowing
fluid.
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Chapter 12

Fourier Analysis of Linear PDEs

For linear PDEs, Fourier analysis is often used to obtain solutions or perform theoretical analysis. This is
because the functions e? = cos(£x)+i sin(¢x) are eigenfunctions of the differentiation operator 8, = .
Differentiating this function gives a scalar multiple of the function, and hence differential equations are
simplified. Fourier analysis is equally important in the study of finite difference methods for linear
PDEs for the same reason: these same functions are eigenfunctions of finite difference operators. This
will be exploited in Section 13.6 where von Neumann stability analysis of finite difference mthods is
discussed. An understanding of Fourier analysis of PDEs is also required in Chapter 16 where finite
difference methods are discussed by derived and analyzed by studying “modified equations”.

12.1 Fourier transforms

Recall that a function v(z) is in the space L? if it has a finite 2-norm, defined by
Oo 2
foll: = [ Jole) da.
— 00

If v € L?, then we can define its Fourier transform 9(€) by
1 ° .
8(€) = «/—27/ v(z)e % da. (12.1)

The function §(€) is also in L? and in fact it has exactly the same 2-norm as v,
1]z =[]l (12.2)

This is known as Parseval’s relation.

We can express the original function v(z) as a linear combination of the set of functions e** for
different values of &, which together form a basis for the infinite dimensional function space L2. The
Fourier transform 0(&) gives the coefficients in the expression

ix

_ L Oo ) ei&x
ole) = o= / GRS (12.3)

which is known as the inverse Fourier transform. This is analogous to writing a vector as a linear
combination of basis vectors.

12.2 Solution of differential equations

The Fourier transform plays a fundamental role in the study of linear PDEs because of the fact that
the functions w(z) = € (for each fixed £) are eigenfunctions of the differential operator d,. In general
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applying 0, to a function gives a new function that is not simply a scalar multiple of the original function.
For example, 0, (z3) = 3z? and these functions are shaped quite differently. However, applying 0, to
w(z) = e gives i€e’®, which is simply the constant i¢ times the original function w(z). We say that
e is an eigenfunction of the operator 9, with eigenvalue i&.

Example 12.1. To see the importance of this fact, let’s solve the advection equation u; + au, = 0
using Fourier transforms. We will transform in « only, and denote the transform of u(x,t) (a function
of x at each fixed ¢) by a(¢,t):

(€, t) = \/%_w /_O:O u(z,t)e” %% da. (12.4)
Then

u(z,t) a(€,t)e’® d¢ (12.5)

-y

and differentiating this with respect to t and z gives

w(z,t) = \/ﬂ/ Ve da

Uy (2, 1) (€, 1)ice™® du.

L

From this we see that the Fourier transform of w; is 4; and the Fourier transform of u, is i{u. Fourier
transforming the advection equation by computing

(us + aug)e %" dz =0

)

thus gives

W (€,t) + aiéu(€,t) =0

or
iy = —ia.

This is a time-dependent ODE for the evolution of @(¢,t) in time. There are two important points to
notice:

o Since differentiation with respect to « has become multiplication by ¢£ after Fourier transforming,
the original PDE involving derivatives with respect to # and ¢ has become an ODE in ¢ alone.

e The ODEs for different values of ¢ are decoupled from one another. We have to solve an infinite
number of ODEs, one for each value of £, but they are decoupled scalar equations rather than a
coupled system.

In fact it is easy to solve these ODEs. We need initial data %(¢,0) at time ¢ = 0 for each value of &,
but this comes from Fourier transforming the initial data u(x,0) = n(z),

(E,0) = 7(6) = = / i€ .

Solving the ODEs then gives

a(E,t) = e S (E). (12.6)
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We can now Fourier transform back using (12.5) to get the desired solution u(z, t):

u(z,1) Tt (e’ de

1 oo
«/—27/700 ‘
= o= et a
= 7z — at).

This last equality comes from noting that we are simply evaluating the inverse Fourier transform of
7} at the point  — at. We see that we have recovered the standard solution (11.11) of the advection
equation in this manner.

12.3 The heat equation

Now consider the heat equation,

Up = Pligg. (12.7)

Since the Fourier transform of ., (x,t) is (i€)%a(¢,t) = —&2a(€, t), Fourier transforming the equation
(12.7) gives the ODE

at(ga t) = _/66212(67 t) (128)

Again we have initial data 4(€,0) = 7(¢) from the given initial data on u. Now solving the ODE gives

(e, t) = et ().

Note that this has a very different character than (12.6), the Fourier transform otained from the ad-
vection equation. For the advection equation, 4(£,t) = e™¢h(¢€) and |a(€,t)| = |7(€)| for all t. Each
Fourier component maintains its original amplitude and is modified only in phase, leading to a traveling
wave behavior in the solution.

For the heat equation, |4(£,t)| decays in time exponentially fast. The decay rate depends on 3,
the diffusion coefficient, and also on £, the wavenumber. High frequency waves (with &2 large) decay
much faster than low frequencies. This results in a smoothing of the solution as time evolves. (See
Figure 13.3.)

The fact that the solution contains components which decay at very different rates leads us to expect
numerical difficulties with stiffness, similar to those discussed for ODE’s in Chapter 10. In Section 13.4
we will see that this is indeed the case, and that implicit methods must generally be used in order to
efficiently solve the heat equation.

12.4 Dispersive waves
Now consider the equation

Ut = Ugyy- (12.9)
Fourier transforming now leads to the ODE

at (f: t) = —2'5311(5, t)a

SO

a(é,t) = e L(E).
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This has a character similar to advection problems in that |@(&,t)| = |(€)| for all time and each Fourier
component maintains its original amplitude. However, when we recombine with the inverse Fourier
transform we obtain

u(z, t) = % / (e e g, (12.10)

which shows that the Fourier component with wave number ¢ is propagating with velocity £2. In the
advection equation all Fourier components propagate with the same speed a, and hence the shape of
the initial data is preserved with time. The solution is the initial data shifted over a distance at.

With the equation (12.9), the shape of the initial data will in general not be preserved, unless the data
is simply a single Fourier mode. This behavior is called dispersive since the Fourier components disperse
relative to one another. Typically smooth data leads to oscillatory solutions since the cancellation of
high wave number modes that smoothness depends on will be lost as these modes shift relative to one
another. See, for example, Whitham[Whi74] for an extensive discussion of dispersive waves.

12.5 Even vs. odd order derivatives

Note that odd order derivatives 9., 82, ... (as in the advection equation or the dispersive equation
(12.9)) have pure imaginary eigenvalues i¢, —i&3, ..., which results in Fourier components that propa-
gate with their magnitude preserved. Even order derivatives, such as the §2 in the heat equation, have
real eigenvalues (—¢&? for the heat equation) which results in exponential decay of the eigencomponents.
Another such equation is

Ut = —Ugggx,

in which case a(¢,t) = e=¢"17(€). Solutions to this equation behave much like solutions to the heat
equation, but with even more rapid damping of oscillatory data.
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Chapter 13

Diffusion Equations

We now begin to study numerical methods for time-dependent partial differential equations, where
variations in space are related to variations in time. We begin with the heat equation (or diffusion
equation) introduced in Chapter 11,

U = Ugg- (13.1)

This is the classical example of a parabolic equation, and many of the general properties seen here carry
over to the design of numerical methods for other parabolic equations.
Along with this equation we need initial conditions,

u(z,0) = n(x) (13.2)
and also boundary conditions if we are working on a bounded domain, e.g., the Dirichlet conditions

u(0,t) = go(t) for t >0

u(l,t) = g1(t) for t >0 (13.3)

ifo<z<1.

We have already studied the steady state version of this equation and spatial discretizations of wu,,
(Chapter 2). We have also studied discretizations of the time derivatives and some of the stability issues
that arise with these discretizations in Chapters 6 through 10. Next we will put these two types of
discretizations together.

In practice we generally apply a set of finite difference equations on a discrete grid with grid points
(zi,t,) where

x; = ih, t, = nk.

Here h = Az is the mesh spacing on the z-axis and k = At is the time step. Let U =~ u(x;,ty)
represent the numerical approximation at grid point (z;,ty).

Since the heat equation is an evolution equation that can be solved forward in time, we set up our
difference equations in a form where we can march forward in time, determining the values UZH'I for
all 7 from the values U]* at the previous time level, or perhaps using also values at earlier time levels
with a multistep formula. Compare this to the case of elliptic equations (boundary value problems)
considered in Chapter 3, where we had to solve for all the grid values simultaneously.

As an example, one natural discretization of (13.1) would be

+1

urrm =up _ 1

k h?

This uses our standard centered difference in space and a forward difference in time. This is an explicit
method since we can compute each Ui”"'1 explicitly in terms of the previous data:

(Ui, =207 + UiLy). (13.4)

k
Ut = U + 55 (UL, = 207 + UlLy). (13.5)
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tn+1 o —————0 —— @

Tj—1 Z; Tj+1

Figure 13.1: Stencils for the methods (13.5) and (13.7).

Figure 13.1(a) shows the stencil of this method. This is a one-step method in time, which is also called
a two-level method in the context of PDE’s since it involves the solution at two different time levels.

Another one-step method, which is much more useful in practice as we will see below, is the Crank-
Nicolson method,

W = %(DZUi" + DU (13.6)
= (Ul = U7+ Ul + URS = 207 4+ UL,
which can be rewritten as
Urtt =Up + %( P 2UR+ UL, + UM =207 U (13.7)
or
— UM+ (L4 20U — e UM = rUR 4+ (1= 20U + 17U, (13.8)

where r = k/2h?. This is an implicit method and gives a tridiagonal system of equations to solve for
all the values U;*** simultaneously. In matrix form this is

[ (14 2r) —r 17 UM
—r (1+2r) —r Uyt
—r (14+2r) —r Uptt
—r (1+42r)  —r untt

i -7 (1+2r) | | UM |

(13.9)
( 7(90(tn) + go(tny1)) + (1 = 2r)UT" + U3
rUy + (1 = 2r) U} +rUY
rUY + (1= 2r)UR + U}

rUr_o+ (1 =21)U2_ +rU}
L rUp 1 + (1 =2r)Up +7(g1(tn) + g1(tns1)) |

Note how the boundary conditions u(0,t) = go(t) and u(1,t) = ¢1(¢) come into these equations.

Since a tridiagonal system of m equations can be solved with O(m) work, this method is essentially
as efficient per time step as an explicit method. We will see in Section 13.4 that the heat equation
is “stiff”, and hence this implicit method, which allows much larger time steps to be taken than an
explicit method, is a very efficient method for the heat equation.
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13.1 Local truncation errors and order of accuracy

We can define the local truncation error as usual — we insert the exact solution u(z,t) of the PDE
into the finite difference equation and determine by how much it fails to satisfy the discrete equation.
It is important to use the form of the difference equation that directly models the PDE in order to get
meaningful results in terms of the powers of £ and h which appear.

Example 13.1. The local truncation error of the method (13.5) is based on the form (13.4):

() = U EE ’2 —u@t) %(u(m —ht) = 2u(e, t) + ulz + h,t).

Again we should be careful to use the form that directly models the differential equation in order to get
powers of k and h that agree with what we hope to see in the global error. Although we don’t know
u(z,t) in general, if we assume it is smooth and use Taylor series expansions about u(z,t), we find that

1 1 1
T(l‘,t) = (Ut + §k’utt + 6k2um + - > — (Um + ﬁhQUmvmv + - ) .

Since u; = Uy, the O(1) terms drop out. By differentiating u; = u,, we find that uy = Utpr = Uraws
and so

1 1
T(w7t) = <§k - ﬁh2> Uggaes + O(k2 + h4)

This method is said to be second order accurate in space and first order accurate in time since the
truncation error is O(h? + k).

The Crank-Nicolson method is centered in both space and time, and an analysis of its local truncation
error shows that it is second order accurate in both space and time,

7(z,t) = O(k* + h?).
Exercise 13.1 Compute the dominant term in the truncation error of Crank-Nicolson.

A method is said to be consistent if 7(x,t) — 0 as k, h — 0. Just as in the other cases we have
studied (boundary value problems and initial value problems for ODE’s), we expect that consistency,
plus some form of stability, will be enough to prove that the method converges at each fixed point
(X,T) as we refine the grid in both space and time. Moreover we expect that for a stable method the
global order of accuracy will agree with the order of the local truncation error, e.g., for Crank-Nicolson
we expect that

Ur —u(X,T) = 0(k> + h?)

as k, h — 0 when th = X and nk = T are fixed.

For linear PDE’s, the fact that consistency plus stability is equivalent to stability is known as the Lax
Equivalence Theorem, and is discussed in Section 13.5 after introducing the proper concept of stability.
As usual, it is the definition and study of stability that is the hard (and interesting) part of this theory.

13.2 Method of Lines discretizations

To understand how stability theory for time-dependent PDE’s relates to the stability theory we have
already developed for time-dependent ODE’s, it is easiest to first consider the so-called Method of Lines
(MOL) discretization of the PDE. In this approach we first discretize in space alone, which gives a large
system of ODE’s with each component of the system corresponding to the solution at some grid point,
as a function of time. The system of ODE’s can then be solved using one of the methods for ODE’s
that we have previously studied.
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Ug(t) Up(t) Ua(t) Upp—1(t) Upp 41(8)

Zo 1 T2 Tm—1 Tm Tm+1

Figure 13.2: Method of lines interpretation. U;(t) is the solution along the line forward in time at the
grid point ;.

For example, we might discretize the heat equation (13.1) in space at grid point x; by

1 )

Ul(t) = E(Ui,l(t) —2U;(t) + Uit1(¢)), for i=1, 2, ..., m, (13.10)
where prime now means differentiation with respect to time. We can view this as a coupled system of
m ODE’s for the variables U;(t) which vary continuously in time along the lines shown in Figure 13.2.
This system can be written as

U'(t) = AU(t) + g(t) (13.11)

where the tridiagonal matrix A is exactly as in (2.9) and g¢(t) includes the terms needed for the boundary
conditions, Up(t) = go(t) and U,41(t) = g1(2),

(2 1 ' 0t ]
1 -2 1 0
1 1 -2 1 1o
1 -2 1 0

L .-y [ 0u(t)

This MOL approach is sometimes used in practice by first discretizing in space and then applying
a software package for systems of ODE’s, such as LSODE. There are also packages that are specially
designed to apply MOL. This approach has the advantage of being relatively easy to apply to a fairly
general set of time-dependent PDE’s, but the resulting method is often not as efficient as specially
designed methods for the PDE.

As a tool in understanding stability theory, however, the MOL discretization is extremely valuable,
and this is the main use we will make of it. We know how to analyze the stability of ODE methods
applied to a linear system of the form (13.11) based on the eigenvalues of the matrix A, which now
depend on the spatial discretization.

If we apply an ODE method to discretize the system (13.11), we will obtain a fully discrete method
which produces approximations U &~ U;(t,) at discrete points in time which are exactly the points
(z4,t,) of the grid that we introduced at the beginning of this chapter.

For example, applying Euler’s method U™t = U™+ kf(U™) to this linear system results in the fully
discrete method (13.5). Applying instead the trapezoidal method (6.16) results in the Crank-Nicolson
method (13.7).
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13.3 Stability theory

We can now investigate the stability of schemes like (13.5) or (13.7) since these can be interpreted as
standard ODE methods applied to the linear system (13.11). We expect the method to be stable if
kX € S, i.e., if the time step k multiplied by any eigenvalue A of A lies in the stability region of the
ODE method, as discussed in Chapter 8.

We have determined the eigenvalues of A in (2.23),

2
Ap = ﬁ(cos(pﬂ'h) —1), for p=1,2, ..., m, (13.13)

where again m and h are related by h = 1/(m+1). Note that there is a new wrinkle here relative to the
ODE’s we considered in Chapter 8: the eigenvalues A, depend on the mesh width h. As we refine the
grid and h — 0, the dimension of A increases, the number of eigenvalues we must consider increases,
and the values of the eigenvalues change.

This is something we must bear in mind when we attempt to prove convergence as k, h — 0. To
begin with, however, let’s consider the simpler question of how the method behaves for some fixed &
and h, i.e., the question of absolute stability in the ODE sense. Then it is clear that the method is
absolutely stable (i.e., the effect of past errors will not grow exponentially in future time steps) provided
that kA, € S for each p.

For the matrix (13.12) coming from the heat equation, the eigenvalues lie on the negative real axis
and the one farthest from the origin is \,,, & —4/h%. Hence we require that —4k/h> € S (assuming the
stability region is connected along the negative real axis up to the origin, as is generally the case).

Example 13.2. If we use Euler’s method to obtain the discretization (13.5), then we must require
|1 + kA| < 1 for each eigenvalue (see Chapter 8) and hence we require —2 < —4k/h? < 0. This limits
the time step allowed to

k < 1

hz = 2
This is a severe restriction: the time step must go like h? as we refine the grid, which is much smaller
than the spatial width h. The Crank-Nicolson method, on the other hand, is based on the trapezoidal
method for the ODE, which is absolutely stable in the whole left half plane. Hence the Crank-Nicolson
method is stable for any time step k > 0.

(13.14)

13.4 Stiffness of the heat equation

Note that the system of ODE’s we are solving is quite stiff, particularly for small h. The eigenvalues of
A lie on the negative real axis with one fairly close to the origin, \; ~ —=2 for all h, while the largest in
magnitude is \,, ~ —4/h?. The “stiffness ratio” of the system is 4/72h?, which grows rapidly as h — 0.
As a result the explicit Euler method is stable only for very small time steps k < %h2. This is typically
much smaller than what we would like to use over physically meaningful times, and an implicit method
designed for stiff problems will be more efficient.

The stiffness is a reflection of the very different time scales present in solutions to the physical
problem modelled by the heat equation. High frequency spatial oscillations in the initial data will
decay very rapidly due to rapid diffusion over very short distances, while smooth data decays much
more slowly since diffusion over long distances takes much longer. This is most easily seen by writing
down the exact solution to the heat equation on 0 < z < 1 with go(t) = ¢1(t) = 0 as a Fourier sine
series:

u(x,t) = d;(t) sin(jnz).
j=1

Inserting this in the heat equation gives the ODE’s

a(t) = —j>m*a;(t), for j=1,2,,... (13.15)
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and so ),
a;(t) = e "t (0),

with the 4;(0) determined as the Fourier coefficients of the initial data n(z).

We can view the equations (13.15) as an infinite system of ODE’s, but which are decoupled so
that the coefficient matrix is diagonal, with eigenvalues —j2n2 for j = 1, 2, .... By choosing data
with sufficiently rapid oscillation (large j), we can obtain arbitrarily rapid decay. For general initial
data there may be some transient period when any high frequencies are rapidly damped, but then the
long-time behavior is dominated by the slower decay rates. See Figure 13.3 for some examples of the
time evolution with different sets of data.

If we are solving the problem over the long time periods needed to track this slow diffusion, then
we would ultimately (after any physical transients have decayed) like to use rather large time steps.
Typically the variation in time is then on roughly the same scale as variations in space, and so we would
like to take k = h so that we have roughly the same resolution in time as we do in space. A method
that requires & =~ h? forces us to take a much finer temporal discretization that we should need to
represent smooth solutions. If A = 0.001, for example, then we would need to take 1000 time steps to
cover each time interval that should be well modelled by a single time step. This is the same difficulty
we encountered with stiff ODE’s in Chapter 10.

Note: The remark above that we want k =~ h is reasonable assuming the method we are using has
the same order of accuracy in both space and time. The method (13.5) does not have this property.
Since the error is O(k + h?) we might want to take k = O(h?) just to get the same level of accuracy in
both space and time. In this sense the stability restriction & = O(h?) may not seem unreasonable, but
this is simply another reason for not wanting to use this particular method in practice.

Note: The general diffusion equation is u; = Su,, and in practice the diffusion coefficient 8 may be
different from 1 by many orders of magnitude. How does this affect our conclusions above? We would
expect by scaling considerations that we should take k ~ h/8 in order to achieve comparable resolution
in space and time, i.e., we would like to take 8k/h ~ 1. (Note that 4;(t) = exp(—j*n23t)4;(0) in this
case.) With the MOL discretization we obtain the system (13.11) but A now has a factor § in front.
For stability we thus require —43k/h? € S, which requires 8k/h? to be order 1 for any explicit method.
This is smaller than what we wish to use by a factor of h, regardless of the magnitude of 3. So our
conclusions on stiffness are unchanged by £. In particular, even when the diffusion coefficient is very
small it is best to use an implicit method. (At least for the case of pure diffusion. If we are solving an
advection-diffusion or reaction-diffusion equation where there are other time scales determined by other
phenomena, then if the diffusive term has a very small coefficient we may be able to use an explicit
method efficiently because of other restrictions on the time step.)

Note: The physical problem of diffusion is “infinitely stiff” in the sense that there are eigenvalues
—j2n? with arbitrarily large magnitude. Luckily the discrete problem is not this stiff. The reason it is
not is that, once we discretize in space, only a finite number of spatial frequencies can be represented.
As we refine the grid we can represent higher and higher frequences, leading to the increasing stiffness
ratio as h — 0.

13.5 Convergence

So far we have only discussed absolute stability, and determined the relation between k and h that must
be satisfied to ensure that errors do not grow exponentially as we march forward in time on this fixed
grid. We now address the question of convergence at a fixed point (X, T') as the grid is refined. It turns
out that in general exactly the same relation between k& and h must now be required to hold as we vary
k and h, letting both go to zero.

In other words, we cannot let k£ and h go to zero at arbitrary independent rates and necessarily expect
the resulting approximations to converge to the solution of the PDE. For a particular sequence of grids
(k1,h1), (k2,ha), ..., with k; — 0 and h; — 0, we will expect convergence only if the proper relation
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Figure 13.3: Solutions to the heat equation at three different times (columns) shown for three different
sets of initial conditions (rows). In the first example u; there is only a low frequency which decays
slowly. In wuy there is only a higher frequency which decays more quickly. In ws there is a mixture of
frequencies, and the high frequencies are most rapidly damped (the initial rapid transient).



132 Diffusion Equations

ultimately holds for each pair. For the method (13.5), for example, the sequence of approximations will
converge only if k;/ h? < 1/2 for all j sufficiently large.

It is sometimes easiest to think of k and h as being related by some fixed rule (e.g., we might choose
k = 0.4h? for the method (13.5)), so that we can speak of convergence as k — 0 with the understanding
that this rule applies on each grid.

The methods we have studied so far can be written in the form

Uttt = BU™ +b" (13.16)

where B € R™*™ on a grid with h = 1/(m + 1) and " € IR™. In the usual way, we can apply the
difference equation to the exact solution and obtain

u"t = Bu™ + b" + k" (13.17)
where
u(zy,ty) T(z1,t0)
un _ U(.’EQ, tn) Tn _ T(.’EQ, tn)
w(Tyyy tr,) (T, tn)

Subtracting (13.17) from (13.16) gives the difference equation for the global error E™ = U™ — u™:
E"tt = BE" — k7",

and hence, as usual,

E" = BnEO —k i Bn_me_l,
m=1

from which we obtain

IE™ | < IB"IE |+ & Y 1B™ ™l - (13.18)

m=1

The method converges provided it is consistent, so that 7"~! — ( in each step, and stable, which now
requires that ||B™|| be uniformly bounded for all ¥ and n with nk < T. In the context of linear PDE’s,
this is known as the Lax Equivalence Theorem. A complete proof can be found in [RM67], but the
essential inequality is (13.18). The form of stability required here, the uniform bound on || B"||, is often
called Laz-Richtmyer stability in the present context.

Recall that B depends on both k and h, but we are assuming some fixed relationship between these.
For the methods we analyzed earlier in this Chapter, we found relations that would guarantee | Bl|2 < 1,
from which Lax-Richtmyer stability follows directly (in the 2-norm at least).

13.5.1 PDE vs. ODE stability theory

It may bother you that the stability we need for convergence now seems to depend on absolute stability,
and on the shape of the stability region for the time-discretization, which determines the required
relationship between k£ and h. Recall that in the case of ODE’s all we needed for convergence was
“zero-stability”, which does not depend on the shape of the stability region except for the requirement
that the point z = 0 must lie in this region.

Here is the difference: With ODE’s we were studying a fixed system of ODE’s and the fixed set of
eigenvalues A were independent of k. For convergence we needed k) in the stability region as k — 0,
but since these values all converge to 0 it is only the origin that is important, at least in order to prove
convergence as k — 0. Hence the need for zero-stabilty. With PDE’s, on the other hand, in our MOL
discretization the system of ODE’s grows as we refine the grid, and the eigenvalues A grow as k (and
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hence h) go to zero. So it is not clear that kA will go to zero, and zero-stability is not sufficient. For
the heat equation with k/h? fixed, these values do not go to zero as k — 0. For convergence we must
now require that these values at least lie in the region of absolute stability as k¥ — 0, and this gives the
stability restriction relating k and h.

Although for the methods considered so far we have obtained ||B|| < 1, this is not really necessary
in order to have Lax-Richtmyer stability. If there is a constant a so that a bound of the form

|B|| <1+ ak (13.19)
holds in some norm, then we will have Lax-Richtmyer stability in this norm, since
IB"| < (1+ak)" < et

for nk < T. Since the matrix B depends on k and grows in size as k — 0, the general theory of
stability in the sense of uniform power boundedness of such families of matrices is often nontrivial. The
Kreiss Matriz Theorem is one important tool in many practical problems. This is discussed in [RM67]
along with some other techniques. See also [Str89] for a good discussion of stability. The recent review
paper [LT98] gives an overview of how ODE and PDE stability theory are related, with a discussion of
stability theory based on the “energy method”, another important approach.

13.6 von Neumann analysis

Although it is useful to go through the MOL formulation in order to understand how stability theory
for PDE’s is related to the theory for ODE’s, in practice there is another approach that will typically
give the proper stability restrictions more easily.

The von Neumann approach to stability analysis is based on Fourier analysis and hence is generally
limited to constant coefficient linear PDE’s. For simplicity it is usually applied to the Cauchy problem,
which is the PDE on all space with no boundaries, —0o < & < oo in the one-dimensional case. Von
Neumann analysis can also be used to study the stability of problems with periodic boundary conditions,
e.g.,in 0 <z <1 with u(0,t) = u(1,t) imposed. This is generally equivalent to a Cauchy problem with
periodic initial data.

Stability theory for PDE’s with more general boundary conditions can often be quite difficult, as
the coupling between the discretization of the boundary conditions and the discretization of the PDE
can be very subtle. Von Neumann analysis addresses the issue of stability of the PDE discretization
alone. Some discussion of stability theory for initial boundary value problems can be found in [Str89],
[RM67].

The Cauchy problem for linear PDE’s can be solved using Fourier transforms — see Chapter 12 for
a review. The basic reason this works is that the functions e®? with wave number ¢ = constant are
eigenfunctions of the differential operator 0,

O,pe? = ige’f’”,
and hence of any constant coefficient linear differential operator. Von Neumann analysis is based on
the fact that the related grid function W; = e%"¢ is an eigenfunction of any standard finite difference
operator!'. For example, if we approximate v'(z;) by DoV, = %(Vj_‘_l —Vj_1), then in general the grid
function DoV is not just a scalar multiple of V. But for the special case of W, we obtain

DoW; = ih (ei(j+1)h€ _ ei(j—l)hs)
2
— i (eihE _ e*ihg) eijhE
3h (13.20)
=3 sin(h&)ehe
i

=5 sin(h&)W;.

INote: in this section i = v/—1 and the index j is used on the grid functions.
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So W is an “eigengridfunction” of the operator Dy, with eigenvalue % sin(h&).

Note the relation between these and the eigenfunctions and eigenvalues of the operator 9, found
earlier: W; is simply the eigenfunction w(x) of 9, evaluated at the point x;, and for small h¢ we can
approximate the eigenvalue of Dy by

i _ 1 _liss 5¢5
Esm(hﬁ) = h<h§ 6h£ +O(h§)>
= Q- GhE

This agrees with the eigenvalue i¢ of 8, to O(h2&3).
Suppose we have a grid function V; defined at grid points z; = jh for j =0, £1, £2, ..., which is
an I, function in the sense that the 2-norm
1/2

Ul = | > (U

j=—o0

is finite. Then we can express V; as a linear combination of the grid functions e¥”¢ for all £ in the range
—m/h < & < w/h. Functions with larger wave number ¢ cannot be resolved on this grid. We can write

K \/—1 / " e ag
_ 1 .
! 21 J—x/n

where

. h i g
V) =—= > Vi,
2 e
These are direct analogs of the formulas for a function v(z) in the discrete case.
Again we have Parseval’s relation, ||V||2 = |[V[|2, although the 2-norms used for the grid function
V; and the function V' (§) defined on [—7/h, 7/h] are different:

1/2

o . n/h 1/2
Vil = o> WP o WVl= </ |V(€)|2d€> :

j=—00 —m/h

In order to show that a finite difference method is stable in the 2-norm by the techniques discussed
earlier in this chapter, we would have to show that ||Bll2 < 1 + ak in the notation of (13.19). This
amounts to showing that there is a constant « such that

[T |2 < (1+ ak) U2

for all U™. This can be difficult to attack directly because of the fact that computing ||U]|2 requires
summing over all grid points, and each U j"“ depends on values of U™ at neighboring grid points so
that all grid points are coupled together. In some cases one can work with these infinite sums directly,
but it is rare that this can be done. Alternatively one can work with the matrix B itself, as we did
above, but this matrix is growing as we refine the grid.

Using Parseval’s relation, we see that it is sufficient to instead show that

10" M|z < (1+ k)05

where U" is the Fourier transform of the grid function U™. The utility of Fourier analysis now stems
from the fact that after Fourier transforming the finite difference method, we obtain a recurrence relation
for each U™ (&) that is decoupled from all other wave numbers. For a 2-level method this has the form

Ut (€) = g(©U™ (9. (13.21)
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The factor g(£), which depends on the method, is called the amplification factor for the method at wave
number £. If we can show that
19(§)] <1+ ak

where « is independent of &, then it follows that the method is stable, since then
U] < (1+ ak)[U" ()] for all &

and so . .
[T |2 < (1+ ak)[|U" 2.

Fourier analysis allows us to obtain simple scalar recursions of the form (13.21) for each wave number
separately, rather than dealing with a system of equations for U ;' that couples together all values of j.

Note: Here we are assuming that u(z,t) is a scalar, so that g(&) is a scalar. For an system of s
equations we would find that g(£) is an s X s matrix for each value of £, so some analysis of matrix
eigenvalues is still required to investigate stability. But the dimension of the matrices is s, independent
of the grid spacing, unlike the MOL analysis where the matrix dimension increases as h — 0.

Example 13.3. Consider the method (13.5). To apply von Neumann analysis we consider how this
method works on a single wavenumber &, i.e., we set

— otjhg
Un = elite, (13.22)
Then we expect that
UMt = g(&)eie, (13.23)
where g(£) is the amplification factor for this wavenumber. Inserting these expressions into (13.5) gives
g(&)e'ihe = eidhe 4 — (eié(a—l)h _ ¢iihE e%é(a+1)h)
= (1 + 72 (em®h — 24 ezgh)> et
and hence f
g(§) =1+ QE(COS(fh) -1).
Since —1 < cos(h) < 1 for any value of &, we see that
k
1- 4? <9 <1
for all £&. We can guarantee that |g(¢)] < 1 for all ¢ if we require
k
45 <2

This is exactly the stability restriction (13.14) we found earlier for this method. If this restriction is
violated, then the Fourier components with some wave number ¢ will be amplified (and, as expected,
it is the largest wavenumbers that go unstable first as & is increased).

Example 13.4. The fact that the Crank-Nicolson method is stable for all k£ and h can also be shown
using von Neumann analysis. Substituting (13.22) and (13.23) into the difference equations (13.7) and
cancelling the common factor of e¥?¢ gives the following relation for g = g(&):

k , .
_ —i€h __ iEh
g_1+—2h2(ez 2+ €M) (14 9g)

and hence

—
_|_
[T
I

(13.24)

[T
0
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where
k ) )
z = ﬁ(e”gh — 2 4 eith)
2k
= ﬁ(cos(fh) -1). (13.25)

Since z < 0 for all £, we see that |g| < 1 and the method is stable for any choice of k and h.

Note that (13.24) agrees with the root (; found for the Trapezoidal method in Example 8.12; while
the z determined in (13.25), for certain values of ¢, is simply & times an eigenvalue A, from (13.13), the
eigenvalues of the Method of Lines matrix. So there is a close connection between the von Neumann
approach and the MOL reduction to a system of ODE’s.
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13.7 Multi-dimensional problems

In two space dimensions the heat equation takes the form

Ut = Ugg + Uyy (13.26)
with initial conditions u(x,y,0) = n(z,y) and boundary conditions all along the boundary of our spatial
domain 2. We can discretize in space using a discrete Laplacian of the form considered in Chapter 3,
say the five-point Laplacian from Section 3.2:

1
V?LUij = ﬁ(Ui—LJ’ + Ui+1,j + Ui,j—l + Ui,j+1 — 4U¢j). (13.27)
If we then discretize in time using the trapezoidal method, we will obtain the two-dimensional version

of the Crank-Nicolson method,
U™ = Ujj + 5[VAUG; + VUGl (13.28)

Since this method is implicit, we must solve a system of equations for all the U;; where the matrix has
the same nonzero structure as for the elliptic systems considered in Chapters 3 and 5. This matrix is
large and sparse, and we generally do not want to solve the system by a direct method such as Gaussian
Elimination. In fact this is even more true for the systems we are now considering than for the elliptic
equation, because of the slightly different nature of this system, which makes other approaches even
more efficient relative to direct methods. It is also extremely important now that we use the most
efficient method possible, because we must now solve a linear system of this form in every time step,
and we may need to take thousands of time steps to solve the time-dependent problem.
We can rewrite the equations (13.28) as

k k
<1 - §v§> Uptt = (1 + §v§> U (13.29)

The matrix for this linear system has the same pattern of nonzeros as the matrix for V2 (see Chapter 3),
but the values are scaled by k/2 and then subtracted from the identity matrix, so that the diagonal
elements are fundamentally different. If we call this matrix A,

k
A:I—avi,

then we find that the eigenvalues of A are

Aprps =1— % [(cos(plwh) — 1) + (cos(pemh) — 1)]

for p1, p» =1, 2, ..., m, where we have used the expression for the eigenvalues of V3 from Section 3.4.
Now the largest eigenvalue of the matrix A thus has magnitude O(k/h?) while the ones closest to the
origin are at 1 + O(k). As a result the condition number of A is O(k/h?). By contrast, the discrete
Laplacian V2 alone has condition number O(1/h?) as we found in Section 3.4. The smaller condition
number in the present case can be expected to lead to faster convergence of iterative methods.
Moreover, we have an excellent starting guess for the solution U"*! to (13.28), a fact that we can
use to good advantage with iterative methods but not with direct methods. Since U{;H =Uls + O(k),

we can use U7, the values from the previous time step, as initial values Ui[;-)] for an iterative method.

We might do even better by extrapolating forward in time, using say Ui[?] =2U;; — Ui’;_l, or by using
an explicit method, say
U = (1 + kV3)UL.

This explicit method (forward Euler) would probably be unstable as a time-marching procedure alone
with the value of k£ we have in mind, but it can be used in this context successfully.

Because of the combination of a reasonably well-conditioned system and very good initial guess, we
can often get away with taking only one or two iterations in each time step, and still get global second
order accuracy.
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13.8 The LOD method

Rather than solving the coupled sparse matrix equation for all the unknowns on the grid simultaneous
as in (13.29), an alternative approach is to replace this fully-coupled single time step by a sequence
of steps, each of which is coupled in only one space direction, resulting in a set of tridiagonal systems
which can be solved much more easily. One example is the Locally One-Dimensional (LOD) method:

k
Ui = Ujj+ 5(DUj + DLUY) (13.30)
n * k * n
Uit = U+ g(DZUU + DU, (13.31)
or, in matrix form,

k 2 * k 2 n
1-5DY)U* = (I+3D2)U (13.32)

k 2 n+1 k 2 *
I- §Dy U = (I+ §Dy U. (13.33)

In (13.30) we apply Crank-Nicolson in the z-direction only, solving u; = u,, alone over time k, and
we call the result U*. Then in (13.31) we take this result and apply Crank-Nicolson in the y-direction
to it, solving u; = uy, alone, again over time k. Physically this corresponds to modeling diffusion in
the z- and y-directions over time k as a decoupled process in which we first allow u to diffuse only in
the x-direction and then only in the y-direction. If the time steps are very short then this might be
expected to give similar physical behavior and hence convergence to the correct behavior as k& — 0.
In fact, for the constant coefficient diffusion problem, it can even be shown that (in the absence of
boundaries at least) this alternating diffusion approach gives ezactly the same behavior as the original
two-dimensional diffusion. Diffusing first in z alone over time k and then in y alone over time k gives
the same result as if the diffusion occurs simultaneously in both directions. This will be shown in
Chapter 18 after fractional step methods have been introduced in a more general context.

Numerically there is a great advantage in using (13.32) and (13.33) rather than the fully coupled
(13.29). In (13.32) the unknowns U; are coupled together only across each row of the grid. For any

fixed value of j we have a tridiagonal system of equations to solve for U}; (t=1,2, ..., m). The
system obtained for each value of j is completely decoupled from the system obtained for other values
of j. Hence we have a set of m + 2 tridiagonal systems to solve (for j =0, 1, ..., m + 1), each of

dimension m, rather than a single coupled system with m? unknowns as in (13.29). Since each of these
systems is tridiagonal, it is easily solved in O(m) operations by Gaussian elimination and there is no
need for iterative methods. (In the next section we will see why we need to solve these for j = 0 and
j =m + 1 as well as at the interior grid points.)

Similarly, (13.31) decouples into a set of m tridiagonal systems in the y-direction fori =1, 2, ..., m.
Hence taking a single time step requires solving 2m + 2 tridiagonal systems of size m, and thus O(m?)
work. Since there are m? grid points, this is the optimal order and no worse than an explicit method,
except for a constant factor.

13.8.1 Boundary conditions

In solving the second set of systems (13.31), we need boundary values U and U™ along the bottom
boundary and U/, ., and UZ};’;L along the top boundary, for terms that go on the right-hand side
of each tridiagonal system. The values at level n 4+ 1 are available from the given boundary data for
the heat equation, by evaluating the boundary conditions at time ¢,11 (assuming Dirichlet boundary
conditions are given). To obtain the values U} we solve equation (13.30) for j = 0 and j = m+1 (along
the boundaries) in addition to the systems along each row interior to the grid.

In order to solve the first set of systems (13.30), we need boundary values Up; and Ug; along the
left boundary and values Uy, ., ; and Uy, ., ; along the right boundary. The values at level n come
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from the given boundary conditions, but we must determine the intermediate boundary conditions at
level * along these boundaries. It is not immediately clear what values should be used. One might be
tempted to think of level x as being half way between ¢,, and t,1, since U™ is generated in the middle
of the two-step procedure used to obtain U™t! from U™. If this were valid, then evaluating the given
boundary data at time t,,1/, = t, + k/2 might provide values for U* on the boundary. This is not a
good idea, however, and would lead to a degredation of accuracy. The problem is that in the first step,
equation (13.30) does not model the full heat equation over time k/2, but rather models part of the
equation (diffusion in z alone) over the full time step k. The values along the boundary will in general
evolve quite differently in the two different cases.

To determine proper values for Ug; and Uy, 1, ;, we can use the equations (13.31) along the left
and right boundaries. At i = 0, for example, this equation gives a system of equations along the left
boundary that can be viewed as a tridiagonal linear system or the unknowns Ug; in terms of the values
U&‘H, which are already known from the boundary conditions at time ¢,,41. Note that we are solving
this equation backwards from the way it will be used in the second step of the LOD process on the
interior of the grid, and this works only because we already know U(’f;rl from boundary data.

Since we are solving this equation backwards, we can view this as solving the diffusion equation
Uy = Uyy over a time step of length —k, backwards in time. This makes sense physically — the
intermediate solution U* represents what is obtained from U™ by doing diffusion in z alone, with no
diffusion yet in y. There are in principle two ways to get this, either by starting with U™ and diffusing
in z, or by starting with U"*! and “undiffusing” in y. We are using the latter approach along the
boundaries to generate data for U*.

Equivalently we can view this as solving the backward heat equation u; = —uy, over time k. This
may be cause for concern, since the backward heat equation is ill-posed. However, since we are only
doing this over one time step starting with given values U(’fj"'l in each time step, this turns out to be a
stable procedure.

There is still a difficulty at the corners. In order to solve (13.31) for Ug;, j = 1, 2, ..., m, we
need to know the values of Ugy, and Ug ., that are the boundary values for this system. These can
be approximated using some sort of explicit and uncentered approximation to either u; = u,, starting
with U™, or to u; = —uy, starting with U"*!. For example we might use

k
(Ugo™ — 205" + Ugy™),

* n+1
Uoo =Upo ™ — 2

which uses the approximation to u,, centered at (zo,y1).

Alternatively, rather than solving the tridiagonal systems obtained from (13.31) for Ugj, we could
simply use an explicit approximation to the backwards heat equation along this boundary,

. k
Usj = Usy™ = 73 (Ua20 = 2055 + Ugji)s (13.34)
for j =1, 2, ..., m. This eliminates the need for values of U* in the corners. Again, since this is not

iterated but only done starting with given (and presumably smooth) boundary data U™ in each time
step, this yields a stable procedure.

13.8.2 Accuracy and stability

With proper treatment of the boundary conditions, it can be shown that the LOD method is second
order accurate. This will be discussed further in Chapter 18 after fractional step methods are introduced
more generally.

It can also be shown that this method, like full Crank-Nicolson, is unconditionally stable for any
time step.
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13.8.3 The ADI method

A modification of the LOD method is also often used, in which the two steps each involve discretization
in only one spatial direction at the advanced time level (giving decoupled tridiagonal systems again),
but coupled with discretization in the opposite direction at the old time level. The classical method of
this form is:

. k .
Uj = Ui+ §(DZUZ} + DiUij) (13.35)
k
UG = U+ (DI + DU, (13.36)

This is called the Alternating Direction Implicit (ADI) method and was first introduced by Douglas
and Rachford [?]. This again gives decoupled tridiagonal systems to solve in each step:

k 2 *
(1 - §Dx> U

<I - §D§> urtt = <I + §D§> U*. (13.38)

<I + §D§> U (13.37)

With this method, each of the two steps involves diffusion in both the z- and y-directions. In the
first step the diffusion in z is modelled implicitly while diffusion in y is modelled explicitly, with the
roles reversed in the second step. In this case each of the two steps can be shown to give a first-order
accurate approximation to the full heat equation over time k/2, so that U* represents a first-order
accurate approximation to the solution at time #,,,/,. Because of the symmetry of the two steps,
however, the local error introduced in the second step almost exactly cancels the local error introduced
in the first step, so that the combined method is in fact second-order accurate over the full time step.

Because U™ does approximate the solution at time %, 4/, in this case, it is possible to simply
evaluate the given boundary conditions at time ¢,,/, to generate the necessary boundary values for
U*. This will maintain second-order accuracy. A better error constant can be achieved by using slightly
modified boundary data which introduces the expected error in U* into the boundary data that should
be cancelled out by the second step.
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Chapter 14

Advection Equations

In this chapter we consider numerical methods for the scalar advection equation
u +au, =0

where a is a constant. See Section 11.3 for a discussion of this equation. For the Cauchy problem we
also need initial data

u(x,0) = n(x).

This is the simplest example of a hyperbolic equation, and is so simple that we can write down the exact
solution,

u(z,t) = n(z — at). (14.1)

One can verify directly that this is the solution (see also Chapter 12). However, many of the issues that
arise more generally in discretizing hyperbolic equations can be most easily seen with this equation.
Other hyperbolic systems will be discussed later.

The first approach we might consider is the analog of the method (13.4) for the heat equation. Using
the centered difference in space and the forward difference in time results in

urtt —unr a
ST (U, - UL, (14.2)
which can be rewritten as
Ui +1 _ Uz — ﬁ( i+l z'fl)' (143)

This again has the stencil shown in Figure 13.1(a). In practice this method is not useful because of
stability considerations, as we will see in the next section.

A minor modification gives a more useful method. If we replace U on the right-hand side of (14.3)
by the average £(U, + U/ ) then we obtain the Laa-Friedrichs method,

ak

1 n n
Uz'n—H:E( i—1 T i+1)_ﬁ

Uiy = ULy). (14.4)
Exercise 14.1 Compute the local truncation error and show that Lax-Friedrichs is first order accurate
in both space and time.

Because of the low accuracy, this method is not commonly used in practice, but it serves to illustrate
some stability issues and so we will study this method along with (14.3) before describing higher order
methods such as the well-known Lax-Wendroff method.

141
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We will see in the next section that Lax-Friedrichs is Lax-Richtmyer stable (see Section 13.5) and
convergent provided

ak
— | < 1. 14.
< (14,5

Note that this stability restriction allows us to use a time step k = O(h) even though the method is
explicit, unlike the case of the heat equation. The basic reason is that the advection equation involves
only the first order derivative u, rather than wu,, and so the difference equation involves 1/h rather
than 1/h2.

The time step restriction (14.5) is consistent with what we would choose anyway based on accuracy
considerations, and in this sense the advection equation is not stiff, unlike the heat equation. This
is a fundamental difference between hyperbolic equations and parabolic equations more generally, and
accounts for the fact that hyperbolic equations are typically solved with explicit methods while the
efficient solution of parabolic equations generally requires implicit methods.

To see that (14.5) gives a reasonable time step, note that

ug(2,) = (@ - at)

while
ui(z,t) = —an'(z — at).

The time derivative wu; is larger in magnitude by a factor a, and so we would expect the time step
required to achieve temporal resolution consistent with the spatial resolution A to be smaller by a factor
of a. This suggests that the relation ¥ = h/a would be reasonable in practice. This is completely
consistent with (14.5).

14.1 MOL discretization

To investigate stability further we will again introduce the method of lines (MOL) discretization as we
did in Section 13.2 for the heat equation. To obtain a system of equations with finite dimension we
must solve the equation on some bounded domain rather than solving the Cauchy problem. However,
in a bounded domain, say 0 < x < 1, the advection equation can have a boundary condition specified
only on one of the two boundaries. If a > 0 then we need a boundary condition at = = 0, say

u(0,t) = go(2), (14.6)

which is the inflow boundary in this case. The boundary at z = 1 is the outflow boundary and the
solution there is completely determined by what is advecting to the right from the interior. If a < 0 we
instead need a boundary condition at = 1, which is the inflow boundary in this case.

The symmetric 3-point methods defined above can still be used near the inflow boundary, but not
at the outflow boundary. Instead the discretization will have to be coupled with some “numerical
boundary condition” at the outflow boundary, say a one-sided discretization of the equation. This issue
complicates the stability analysis and will be discussed later.

We can obtain a nice MOL discretization if we consider the special case of periodic boundary condi-
tions,

u(0,t) = u(1,t) for ¢ > 0.

Physically, whatever flows out at the outflow boundary flows back in at the inflow boundary. This also
models the Cauchy problem in the case where the initial data is periodic with period 1, in which case
the solution remains periodic and we only need to model a single period 0 < z < 1.

In this case the value Uy(t) = Un1(t) along the boundaries is another unknown, and we must
introduce one of these into the vector U(t). If we introduce Up,41(t) then we have the vector of grid
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values
Ui(t)
Us(t)

Um+1 (t)
For 2 < 2 < m we have the ODE

Uj(t) = =55 Upsa(t) = Up1 (1)),

while the first and last equations are modified using the periodicity:

a
Ui(t) = =55 02(t) = Un4a (1)),
a
mr1(t) = =5 (U1(t) = Un(1)).
This system can be written as
U'(t) = AU(t) (14.7)
with
( 0 1 -1
-1 0 1
-1 0 1
a
A= _—— (m+1)><(m+1)‘ 14.
5% S (14.8)
-1 0 1
L 1 -1 0 |
Note that this matrix is skew-symmetric (A7 = —A) and so its eigenvalues must be pure imaginary. In
fact, the eigenvalues are
ia .
Ap = Esm(27rph), for p=1,2, ..., m+1. (14.9)
The corresponding eigenvector u? has components
uf =¥ for j=1,2, ..., m+1. (14.10)

The eigenvalues lie on the imaginary axis between —ia/h and ia/h.

For absolute stability of a time discretization we need the stability region S to include this interval.
Any method that includes some interval iy, |y| < b of the imaginary axis will be stable provided
|ak/h| < b.

14.1.1 Forward Euler time discretization

The method (14.3) can be viewed as the forward Euler time discretization of the MOL system of ODE’s
(14.7). We found in Section 8.3 that this method is only stable if |1 + kA] < 1 and the stability region
S is the unit circle centered at —1. No matter how small the ratio k/h is, since the eigenvalues X, from
(14.9) are imaginary, the values kA, will not lie in S. Hence the method is unstable for any fixed mesh
ratio k/h. See Figure 14.1(a).

The method will be convergent if we let £ — 0 faster than h, since then kXA, — 0 for all p and the
zero-stability of Euler’s method is enough to guarantee convergence. Taking k much smaller than A is
generally not desirable and the method is not used in practice. However, it is interesting to analyze this
situation also in terms of Lax-Richtmyer stability, since it shows an example where the Lax-Richtmyer
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stability uses a weaker bound of the form (13.19), || B|| < 1+ak, rather than || B|| < 1. Here B = I +kA.
Suppose we take k = h?, for example. Then we have

|1+ kX |* < 1+ (ka/h)?
for each p (using the fact that A, is pure imaginary) and so
11+ kN ? <1+ a’h* =1+ a’k.
Hence ||I + kA||3 <1+ a®k and if nk < T we have
(L + kA" |2 < 1+ a®k)™/? < T2,

showing the uniform boundedness of [|[B™|| (in the 2-norm) needed for Lax-Richtmyer stability.

14.1.2 Leapfrog

A better time discretization is to use the midpoint method (6.17),
urtt =yt 4 2kAUT,
which gives the Leapfrog method for the advection equation,

Uptt=u 7( i1~ Uit)- (14.11)
This is a 3-level explict method, and is second order accurate in both space and time.
Recall from Section 8.3 that the stability region of the midpoint method is the interval i« for
—1 < a < 1 of the imaginary axis. This method is hence stable on the advection equation provided
lak/h| < 1 is satsified.

14.1.3 Lax-Friedrichs

Now consider the Lax-Friedrichs method (14.4). At first glance this does not look like a time discretiza-
tion of an ODE system of the form U'(t) = AU(t). However, we can rewrite (14.4) using the fact
that

1 1
E(Uzn—l-l'UiT-li—l) :Uin-l_i(Uin—l =20+ Uly),

to obtain

n ak n n 1 n n n
Uttt = Ui~ ﬁ( i — UL+ §(Ui—1 207"+ Ujy). (14.12)

This can be rearranged to give

ot - (Ual - U) o (U 207 + %)

k 2h T2k h2
If we compute the local truncation error from this form we see, of course, that it is consistent with the
advection equation u; + au, = 0, since the term on the right hand side vanishes as k, h — 0 (assuming
k/h is fixed). However, it looks more like a discretization of the advection-diffusion equation

Ut + AUy = EUgppy

where e = h?/2k. Actually, we will see later that it is in fact a second order accurate method on a slightly
different advection-diffusion equation. Viewing Lax-Friedrichs in this way allows us to investigate the
diffusive nature of the method quite precisely.
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For our present purposes, however, the crucial part is that we can now view (14.12) as resulting
from a Forward Euler discretization of the system of ODE’s

U'(t) = BU(t)
with
0 1 -1 (—2 1 1 ]
-1 0 1 1 -2 1
-1 0 1 1 -2 1
B——% _ + 3
' (14.13)
-1 0 1 1 -2 1
|1 -1 0 | L 1 1 -2 |

where € = h?/2k. The matrix B differs from the matrix A of (14.8) by the addition of a small multiple
of the second difference operator, which is symmetric rather than skew-symmetric. As a result the
eigenvalues of B are shifted off the imaginary axis and now lie in the left half plane. There is now a
hope that each kA will lie in the stability region of Euler’s method if k is small enough relative to h.

It can be verified that the eigenvectors (14.10) are also eigenvectors of the second difference operator
(with periodic boundary conditions) that appears in (14.13), and hence these are also the eigenvectors
of the full matrix B. We can easily compute that the eigenvalues of B are

2€

e (1 — cos(2mph)). (14.14)

Uy = u“ sin(27ph) —
h

The values kA are plotted in the complex plane for various different values of € in Figure 14.1. They
lie on an ellipse centered at —2ke/h? with semi-axes of length 2ke/h? in the z-direction and ak/h in
the y-direction. For the special case ¢ = h?/2k used in Lax-Friedrichs, we have —2ke/h?> = —1 and
this ellipse lies entirely inside the unit circle centered at —1, provided that |ak/h| < 1. (If |ak/h| > 1
then the top and bottom of the ellipse would extend outside the circle.) The forward Euler method is
stable as a time-discretization, and hence the Lax-Friedrichs method is Lax-Richtmyer stable, provided
lak/h| < 1.

Exercise 14.2 Verify the expression (14.14) for the eigenvalues of B.

14.2 The Lax-Wendroff method

One way to achieve second order accuracy on the advection equation is to use a second order temporal
discretization of the system of ODE’s (14.7) since this system is based on a second order spatial dis-
cretization. This can be done with the midpoint method, for example, which gives rise to the Leapfrog
scheme (14.11) already discussed. However, this is a 3-level method and for various reasons it is often
much more convenient to use 2-level methods for PDE’s whenever possible — in more than one di-
mension the need to store several levels of data may be restrictive, boundary conditions can be harder
to impose, and combining methods using fractional step procedures (as discussed in Chapter 18) may
require 2-level methods for each step, to name a few reasons. Moreover, the Leapfrog method is “nondis-
sipative” in a sense that will be discussed in Chapter 16, leading to potential stability problems if the
method is extended to variable coefficient or nonlinear problems.

Another way to achieve second order accuracy in time would be to use the trapezoidal method to
dicretize the system (14.7), as was done to derive the Crank-Nicolson method for the heat equation.
But this is an implicit method and for hyperbolic equations there is generally no need to introduce this
complication and expense.
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Figure 14.1: Eigenvalues of the matrix B in (14.13), for various values of ¢, in the case h = 1/50 and
k=0.8h,a=1,s0ak/h=0.38.

(a) shows the case e = 0 which corresponds the forward Euler method (14.3).

(d) shows the case € = a?k/2, the Lax-Wendroff method (14.16).

(e) shows the case € = h%/2k the Lax-Friedrichs method (14.4).

The method is stable for € between a?k/2 and h?/2k.
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Another possibility is to use a 2-stage Runge-Kutta method such as the one in Example 6.15 for the
time discretization. This can be done, though some care must be exercised near boundaries and the
use of a multi-stage method again typically requires additional storage.

One simple way to achieve a 2-level explicit method with higher accuracy is to use the idea of
Taylor series methods, as described in Section 6.6. Applying this directly to the linear system of ODE’s
U'(t) = AU(t) (and using U"” = AU’ + A2U) gives the second order method

Urtl = Un 4+ EAU™ + %k2A2U".

Here A is the matrix (14.8) and computing A? and writing the method at the typical grid point then
gives

. ak, " a*k?
Ut =05 - )+W(

J ﬁ( J+1 T Y-l
This method is second order accurate and explicit, but has a 5-point stencil involving the points U,
and U} ,. With periodic boundary conditions this is not a problem, but with other boundary conditions
this method needs more numerical boundary conditions than a 3-point method.

Note that the last term in (14.15) is an approximation to %aQ k?u,, using a centered difference based
on stepsize 2h. A simple way to achieve a second-order accurate 3-point method is to replace this term
by the more standard 3-point formula. We then obtain the standard Laxz- Wendroff method:

27.2
n+l _ rm ak n n a’k
Ui = U5 = 5 U = Ui + o

A cleaner way to derive this method is to use Taylor series expansions directly on the PDE u; +au, =

0, to obtain

Uty = 2UT +UT,y). (14.15)

(U, =207 +UT,). (14.16)

1
u(z,t + k) = u(z,t) + kug(z,t) + §k2utt(x,t) +oee

Replacing u; by —au, and us by a*ug, gives
1.
u(z, t + k) = u(z, t) + kaug (z,t) + §k2a2um(x,t) +oee

If we now use the standard centered approximations to u, and wu,, and drop the higher order terms,
we obtain the Lax-Wendroff method (14.16). It is also clear how we could obtain higher-order accurate
explicit 2-level methods by this same approach, by retaining more terms in the series and approximating
the spatial derivatives (including the higher-order spatial derivatives that will then arise) by suitably
high order accurate finite difference approximations. The same approach can also be used with other
PDE’s. The key is to replace the time derivatives arising in the Taylor series expansion with spatial
derivatives, using expressions obtained by differentiating the original PDE.

Note that with periodic boundary conditions, the method (14.16) can be writtin in the same form
(14.13) as the Lax-Friedrichs method, but with ¢ = a®k/2 instead of the value ¢ = h*/2k used in
Lax-Friedrichs.

14.2.1 Stability analysis

We can analyze the stability of Lax-Wendroff following the same approach used for Lax-Friedrichs in
Section 14.1. We can view it as Euler’s method applied to the linear system of ODE’s with

[— (%) sin(prh) + (%)2 (cos(prh) —1)).

These values all lie on an ellipse centered at —(ak/h)? with semiaxes of length (ak/h)? and ak/h. If
|ak/h| < 1 then all of these eigenvalues lie inside the stability region of Euler’s method. Figure 14.1(d)
shows an example in the case ak/h = 0.8
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14.3 Upwind methods

So far we have considered methods based on symmetric approximations to derivatives. Alternatively,
one might use a nonsymmetric approximation to u, in the advection equation, e.g.,

1
uz(acj,t) ~ E(UJ — U]‘_l) (1417)
or
1
um(a:j,t) ~ E(U'H_l - UJ) (1418)

These are both one-sided approximations, since they use data only to one side or the other of the point
zj. Coupling one of these approximations with forward differencing in time gives the following methods
for the advection equation:

k
an-l-l _ [T]n _ ah ([T]n _ ;7,71) (1419)
or
urtt — g _ ak o un 14.20
j — Y h ( Jj+1 j)' ( ’ )

These methods are first order accurate in both space and time. One might wonder why we would
want to use such approximations, since centered approximations are more accurate. For the advection
equation, however, there is an asymmetry in the equations due to the fact that the equation models
translation at speed a. If a > 0 then the solution moves to the right, while if a < 0 it moves to the
left. We will see that there are situations where it is best to acknowledge this asymmetry and use
one-sided differences in the appropriate direction. In practice we often want to also use more accurate
approximations however, and we will see later how to extend these methods to higher order accuracy.

The choice between the two methods (14.19) and (14.20) should be dictated by the sign of a. Note
that the true solution over one time step can be written as

u(zj, t+ k) = u(z; — ak,t)

so that the solution at the point z; at the next time level is given by data to the left of z; if a > 0
whereas it is determined by data to the right of x; if a < 0. This suggests that (14.19) might be a
better choice for a > 0 and (14.20) for a < 0.

In fact the stability analysis below shows that (14.19) is stable only if

0<® 1. (14.21)
h

Since k and h are positive, we see that this method can only be used if ¢ > 0. This method is called the
upwind method when used on the advection equation with a > 0. If we view the equation as modeling
the concentration of some tracer in air blowing past us at speed a, then we are looking in the correct
upwind direction to judge how the concentration will change with time. (This is also referred to as an
upstream differencing method in the literature.)

Conversely, (14.20) is stable only if

ak

-1< <0, (14.22)

and can only be used if ¢ < 0. In this case (14.20) is the proper upwind method to use.
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14.3.1 Stability analysis
The method (14.19) can be written as

UpH = U = U = UJ) + S Ul — 207 + UL, (1423)
which puts it in the form (14.13) with € = ah/2. We have seen previously that methods of this form
are stable provided |ak/h| < 1 and also —2 < —2¢k/h? < 0. Since k, h > 0, this requires in particular
that € > 0. For Lax-Friedrichs and Lax-Wendroff, this condition was always satisfied, but for upwind
the value of € depends on a and we see that € > 0 only if ¢ > 0. If ¢ < 0 then the eigenvalues of the
MOL matrix lie on a circle that lies entirely in the right half plane, and the method will certainly be
unstable. If a > 0 then the above requirements lead to the stability restriction (14.21).

If we think of (14.23) as modeling an advection-diffusion equation, then we see that a < 0 corresponds
to a negative diffusion coefficient. This leads to an ill-posed equation, as in the “backward heat equation”
(see Chapter 12).

The method (14.20) can also be written in a form similar to (14.23), but the last term will have a
minus sign in front of it. In this case we need a < 0 for any hope of stability and then easily derive the
stability restriction (14.22).

The three methods Lax-Wendroff, upwind, and Lax-Friedrichs, can all be written in the same form
(14.13) with different values of €. If we call these values €., €.,, and €, respectively, then we have

a’k ah h?
€ = — = — = —,
LW 5 €up 9 €LF 2%
Note that
ak and ak
= — 1 = — .
€rLw A €up €up A €rr

Ifo< % < 1 then €., <e€,, <€, and the method is stable for any value of € between €,,, and €.

14.3.2 The Beam-Warming method

A second-order accurate method with the same one-sided character can be derived by following the
derivation of the Lax-Wendroff method, but using one-sided approximations to the spatial derivatives.
This results in the Beam- Warming method, which for a > 0 takes the form

n n a’k n n n a’k
UMttt =UP — —(BUS —4U} , + U} y) +

-5 3 S (US =207 +U). (14.24)

Exercise 14.3 Compute the local truncation error for Beam- Warming.

Exercise 14.4 Show that Beam-Warming is stable for 0 < ak/h < 2.

14.4 Characteristic tracing

The solution to the advection equation is given by (14.1). The value of u is constant along each
characteristic, which for this example are straight lines with constant slope. Over a single time step we
have

w(@j,tn1) = u(z; — ak,ty). (14.25)

Tracing this characteristic back over time step k from the grid point z; results in the picture shown
in Figure 14.2(a). Note that if 0 < ak/h < 1 then the point z; — ak lies between z;_; and z;. If
we carefully choose k and h so that ak/h = 1 exactly, then z; — ak = 2;_1 and we would find that



150 Advection Equations

ZTj-1 Zj Zj Tjy1

(a) ak (b) —ak

Figure 14.2: Tracing the characteristic of the advection equation back in time from the point (x;,t,41)
to compute the solution according to (14.25). Interpolating the value at this point from neighboring
grid values gives the upwind method (for linear interpolation) or the Lax-Wendroff or Beam-Warming
methods (quadratic interpolation). (a) shows the case a > 0, (b) shows the case a < 0.

w(Zj,tnt1) = u(zj—1,tn). The solution should just shift one grid cell to the right in each time step. We
could compute the ezact solution numerically with the method

Uttt =up . (14.26)

Actually, all of the 2-level methods that we have considered so far reduce to the formula (14.26) in this
special case ak = h, and each of these methods happens to be exact in this case.

If ak/h < 1 then the point x;—ak is not exactly at a grid point, as illustrated in Figure 14.2. However,
we might attempt to use the relation (14.25) as the basis for a numerical method by computing an
approximation to u(z; — ak,t,) based on interpolation from the grid values U at nearby grid points.
For example, we might perform simple linear interpolation between U}'; and Uj'. Fitting a linear
function to these points gives the function

ur—un,
plx) =Uj + (& — x;) (%) ) (14.27)
Evaluating this at ; — ak and using this to define U;H'l gives
U}H—l =p(x; —ak) =Uj' - T(Uj - UjLq).

This is precisely the first-order upwind method (14.19). Note that this can also be interpreted as a
linear combination of the two values Uj" ; and Uj':
ak
h

) Ur+ —Ur,. (14.28)

n+1 __
= (1) oy 1

Moreover this is a convex combination (i.e., the coefficients of Uj' and U}' | are both nonnegative and
sum to 1) provided the stability condition (14.21) is satisfied, which is also the condition required to
insure that z; — ak lies between the two points z;_; and x;. In this case we are interpolating between
these points with the function p(z). If the stability condition is violated then we would be using p(x)
to extrapolate outside of the interval where the data lies. It is easy to see that this sort of extrapolation
can lead to instability — consider what happens if the data U}" is oscillatory with U}' = (—=1)7, for
example.

To obtain better accuracy, we might try using a higher order interpolating polynomial based on more
data points. If we define a quadratic polynomial p(z) by interpolating the values Uy, U, and U}y,
and then define U}H'l by evaluating p(z; — ak), we simply obtain the Lax-Wendroff method (14.16).
Note that in this case we are properly interpolating provided that the stability restriction |ak/h| < 1 is
satisfied. If we instead base our quadratic interpolation on the three points U}' 5, U' ;, and U}, then
we obtain the Beam-Warming method (14.24).

Exercise 14.5 Verify that Laz- Wendroff and Beam-Warming can be obtained as described above.
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Chapter 15

The CFL Condition

The discussion of Section 14.4 suggests that for the advection equation, the point z; — ak must be
bracketed by points used in the stencil of the finite difference method if the method is to be stable and
convergent. This turns out to be a necessary condition in general for any method developed for the
advection equation: If an+1 is computed based on values U7, ), UT, 14, ..., UlY, withp <gq (negative
values are allowed for p and ¢), then we must have z;1, < z; — ak < xj;4 or the method cannot be
convergent. Since x; = ih, this requires

This result for the advection equation is one special case of a much more general principle that is
called the CFL condition. This condition is named after Courant, Friedrichs, and Lewy, who wrote a
fundamental paper in 1928 that was essentially the first paper on the stability and convergence of finite
difference methods for partial differential equations. (The original paper is in German[CFL28] but an
English translation is available in [CFL67].)

To understand this general condition, we must discuss the domain of dependence of a time-dependent
PDE. (See, e.g., [Kev90] for more details.) For the advection equation, the solution u(X,T) at some
fixed point (X,T) depends on the initial data n at only a single point: «(X,T) = u(X — aT). We say
that the domain of dependence of the point (X,T) is the point X — aT":

D(X,T) = {X —aT}.

If we modify the data i at this point then the solution u(X,7T) will change, while modifying the data
at any other point will have no effect on the solution at this point.

This is a rather unusual situation for a PDE. More generally we might expect the solution at (X,T)
to depend on the data at several points or over a whole interval. In Chapter ?? we consider hyperbolic
systems of equations of the form u; + Au, = 0, where u € R® and A € IR*** is a matrix with real

eigenvalues A;, As,..., Ags. If these values are distinct then we will see that the solution u(X,T)
depends on the data at the s distinct points X — AT, ..., X — A\sT and hence
DX, T)={X - T forp=1, 2, ..., s}

The heat equation uy = u,, has a much larger domain of dependence. For this equation the solution
at any point (X,7) depends on the data everywhere and the domain of dependence is the whole real
line,

D(X,T) = (—o0, 00).

This equation is said to have infinite propagation speed, since data at any point is felt everywhere at
any small time in the future (though its effect of course decays exponentially away from this point).

151
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ty tq
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Figure 15.1: (a) Numerical domain of dependence of a grid point when using a 3-point explicit method.
(b) On a finer grid.

A finite difference method also has a domain of dependence. On a particular fixed grid we define
the domain of dependence of a grid point (z;,t,) to be the set of grid points x; at the initial time
t = 0 with the property that the data U? at x; has an effect on the solution U j. For example, with the

Lax-Wendroff method (14.16) or any other 3-point method, the value U}' depends on U f:ll, U f_l, and

U;ﬂ:ll. These values depend in turn on U ;‘:22 through U ]"J:f Tracing back to the initial time we obtain
a triangular array of grid points as seen in Figure 15.1(a), and we see that U}' depends on the initial
data at the points z;_p, ..., Tjin.

Now consider what happens if we refine the grid, keeping k/h fixed. Figure 15.1(b) shows the
situation when k and h are reduced by a factor of 2, focusing on the same value of (X,T") which now
corresponds to Uzzjn on the finer grid. This value depends on twice as many values of the initial data,
but these values all lie within the same interval and are merely twice as dense.

If the grid is refined further with k/h = r fixed, then clearly the numerical domain of dependence
of the point (X,T') will fill in the interval [X —T'/r, X +T/7]. As we refine the grid, we hope that our
computed solution at (X,7") will converge to the true solution u(X,T) = n(X — aT'). Clearly this can
only be possible if

X-T/r<X—-aT <X+T/r. (15.1)

Otherwise, the true solution will depend only on a value (X — aT") that is never seen by the numerical
method, no matter how fine a grid we take. We could change the data at this point and hence change the
true solution without having any effect on the numerical solution, so the method cannot be convergent
for general initial data.

Note that the condition (15.1) translates into |a| < 1/r and hence |ak/h| < 1. This can also be
written as |ak| < h, which just says that over a single time step the characteristic we trace back must
like within one grid point of z; (recall the discussion of interpolation vs. extrapolation in Section 14.4).

The CFL condition generalizes this idea:

The CFL Condition: A numerical method can be convergent only if its numerical domain of
dependence contains the true domain of dependence of the PDE, at least in the limit as k and h go to
zero.

For the Lax-Wendroff method the condition on k and h required by the CFL condition is exactly
the stability restriction we derived by von Neumann analysis. It is important to note that in general
the CFL condition is only a necessary condition. If it is violated then the method cannot be convergent.
If it is satisfied, then the method might be convergent, but a proper consistency and stability analysis
is required to prove this and determine the proper stability restriction on k and h.

Example 15.1. The 3-point method (14.3) has the same numerical domain of dependence as Lax-
Wendroff, but is unstable for any fixed value of k/h even though the CFL condition is satisfied for
lak/h| < 1.

For the first-order upwind and Beam-Warming methods, the stability restriction agrees exactly with
what is required by the CFL condition.

Example 15.2. For the heat equation the true domain of dependence is the whole real line. It
appears that any 3-point explicit method violates the CFL condition, and indeed it does if we fix k/h
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as the grid is refined. However, recall from Section 14.1.1 that the 3-point explicit method (13.5) is
convergent as we refine the grid provided we have k/h* < 1/2. In this case when we make the grid finer
by a factor of 2 in space it will become finer by a factor of 4 in time, and hence the numerical domain
of dependence will cover a wider interval at time ¢ = 0. As k — 0 the numerical domain of dependence
will spread to cover the entire real line, and hence the CFL condition is satisfied in this case.

An implicit method such as the Crank-Nicolson method (13.7) satisfies the CFL condition for any
time step k. In this case the numerical domain of dependence is the entire real line because the
tridiagonal linear system couples together all points in such a manner that the solution at each point
depends on the data at all points (i.e., the inverse of a tridiagonal matrix is dense).
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Chapter 16

Modified Equations — Numerical
Diffusion and Dispersion

Our standard tool for estimating the accuracy of a finite difference method has been the “local truncation
error”. Seeing how well the true solution of the PDE satisfies the difference equation gives an indication
of the accuracy of the difference equation. Now we will study a slightly different approach which can be
very illuminating as it reveals much more about the structure and behavior of the numerical solution
rather than just its size.

The idea is to ask the following question: Is there a PDE v; = --- such that our numerical approx-
imation U}" is actually the ezact solution to this PDE, Uj* = v(zj,t,)? Or, less ambitiously, can we at
least find a PDE that is better satisfied by U;}' than the original PDE we were attempting to model? If
s0, then studying the behavior of solutions to this PDE should tell us much about how the numerical
approximation is behaving. This can be advantageous because it is often easier to study the behavior
of PDE’s than of finite difference formulas.

In fact it is possible to find a PDE that is exactly satisfied by the U}, by doing Taylor series
expansions as we do to compute the local truncation error. However, this PDE will have an infinite
number of terms involving higher and higher powers of k£ and h. By truncating this series at some point
we will obtain a PDE that is simple enough to study and yet gives a good indication of the behavior of
the U}

16.1 Upwind

This is best illustrated with an example. Consider the upwind method (14.19) for the advection equation
ug + auy = 0 in the case a > 0,

1 ak
Urtt =Up - F(U]’? - U y). (16.1)
The process of deriving the modified equation is very similar to computing the local truncation error,
only now we insert the formula v(z,t) into the difference equation. This is supposed to be a function
that agrees exactly with U* at the grid points and so, unlike u(z, ), the function v(z,t) satisfies (16.1)

exactly:

v(z,t+ k) =v(zx,t) — %(v(w,t) —v(z — h,t)).

Expanding these terms in Taylor series about (z,t) and simplifying gives

1 1 1 1
<’Ut + Ekvtt + 6](221)“,5 + - > +a (’Uw — §h1)gm + 6]121)3””5 + - ) =0.
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We can rewrite this as
1 1
vy + av, = §(ah’l)ww — k’l)tt) =+ g(ah2’l)www — kQ’Uttt) + -

This is the PDE that v satisfies. If we take k/h fixed, then the terms on the right hand side are
O(k), O(k?), etc. so that for small k we can truncate this series to get a PDE that is quite well satisfied
by the U}".

If we drop all the terms on the right hand side we just recover the original advection equation. Since
we have then dropped terms of O(k), we expect that U} satisfies this equation to O(k), as we know to
be true since this upwind method is first order accurate.

If we keep the O(k) terms then we get something more interesting:

1
v + avy = §(ahvm — kuy) (16.2)

This involves second derivatives in both z and ¢, but we can derive a slightly different modified equation
with the same accuracy by differentiating (16.2) with respect to ¢ to obtain

1
Vi = —QUgy + E(ahvwwt — kvge)
and with respect to z to obtain
1
Vg = —QUgq + §(ahvwww - kvtti)'

Combining these gives
Vi = a*Vgs + O(k).
Inserting this in (16.2) gives

1 .
vy + av, = i(ahvm — a’kv,,) + O(K?).
Since we have already decided to drop terms of O(k?), we can drop these terms here also to obtain

1 ak
vy +av, = §ah <1 — 7) Vg (16.3)
This is now a familiar advection-diffusion equation. The grid values U} can be viewed as giving a second
order accurate approximation to the true solution of this equation (whereas they only give first order
accurate approximations to the true solution of the advection equation).

Exercise 16.1 View (16.1) as a numerical method for the equation (16.2). Compute the local trunca-
tion error and verify that it is O(k?).

The fact that the modified equation is an advection-diffusion equation tells us a great deal about how
the numerical solution behaves. Solutions to the advection-diffusion equation translate at the proper
speed a but also diffuse and are smeared out. This is clearly visible in Figure 16.1.

Note that the diffusion coefficient in (16.2) is 1 (ah — a®k), which vanishes in the special case ak = h.
In this case we already know that the exact solution to the advection equation is recovered by the
upwind method.

Also note that the diffusion coefficient is positive only if 0 < ak/h < 1. This is precisely the
stability limit of upwind. If this is violated, then the diffusion coefficient in the modified equation is
negative, giving an ill-posed problem with exponentially growing solutions. Hence we see that even
some information about stability can be extracted from the modified equation.

Exercise 16.2 Determine the modified equation for (14.2) and show that the diffusion coefficient is
always negative.
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Upwind solution at time 4
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Figure 16.1: Numerical solution using upwind (diffusive) and Lax-Wendroff (dispersive) methods.
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16.2 Lax-Wendroff

If the same procedure is followed for the Lax-Wendroff method, we find that all O(k) terms drop out of
the modified equation, as is expected since this method is second order accurate on the advection equa-
tion. The modified equation obtained by retaining the O(k?) term and then replacing time derivatives

by spatial derivatives is
1 E\?
v + av, = —gah2 <1 — <%) ) D — (16.4)

The Lax-Wendroff method produces a third order accurate solution to this equation. This equation has
a very different character from (16.2). The v, term leads to dispersive behavior rather than diffusion.
(See Chapter 12 and [Str89], [Whi74] for further details.) This is clearly seen in Figure 16.1, where
the U' computed with Lax-Wendroff are compared to the true solution of the advection equation. The
magnitude of the error is smaller than with the upwind method for a given set of k£ and h, since it is
a higher order method, but the dispersive term leads to an oscillating solution and also a shift in the
location of the main peak, a phase error.
The group velocity for wave number ¢ under Lax-Wendroff is

2
cg:a—%ah2 (1—(%) >£2

which is less than a for all wave numbers. As a result the numerical result can be expected to develop
a train of oscillations behind the peak, with the high wave numbers lagging farthest behind the correct
location.

If we retain one more term in the modified equation for Lax-Wendroff, we would find that the U}
are fourth order accurate solutions to an equation of the form

1. k>
vy + avy = Eahz ((%) - 1) Vzza — €Uzaaza, (165)

where the € in the fourth order dissipative term is O(h?) and positive when the stability bound holds.
This higher order dissipation causes the highest wave numbers to be damped, so that there is a limit
to the oscillations seen in practice.

The fact that this method can produce oscillatory approximations is one of the reasons that the first-
order upwind method is sometimes preferable in practice. In some situations nonphysical oscillations
may be disasterous, for example if the value of u represents a concentration that cannot go negative or
exceed some limit without difficulties arising elsewhere in the modeling process.

16.3 Beam-Warming

The Beam-Warming method (14.24) has a similar modified equation,

1, 3ak ak\”
Ut + U/Uz — Eah <2 - T + <T> ) vxwx- (16-6)

In this case the group velocity is greater than a for all wave numbers in the case 0 < ak/h < 1, so that
the oscillations move ahead of the main hump. If 1 < ak/h < 2 then the group velocity is less than a
and the oscillations fall behind.
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Chapter 17

Hyperbolic Systems and
High-Resolution Methods

This chapter has been adapted directly from some recent lecture notes [LMDMar] on finite volume
methods for hyperbolic systems. The full text of my contribution to these notes is available on-line (see
the reference or the 586 webpage). More details on some of this material can be found in [LeV90].

The notation in this chapter is somewhat different from elsewhere, in particular ¢ is used for the
solution instead of u, with u now being used for velocity.

17.1 Scalar equations

We begin our study of conservation laws by considering the scalar case. Many of the difficulties encoun-
tered with systems of equations are already encountered here, and a good understanding of the scalar
equation is required before proceeding.

17.1.1 The linear advection equation

We first consider the linear advection equation,
Gt + aqy = 0. (171)

The Cauchy problem is defined by this equation on the domain —co < x < oo, t > 0 together with
initial conditions

q(z,0) = qo(z) . (17.2)
The solution to this problem is simply
4(z,t) = qo( — at) (17.3)

for t > 0, as can be easily verified. As time evolves, the initial data simply propagates unchanged to
the right (if @ > 0) or left (if @ < 0) with velocity a. The solution ¢(z,t) is constant along each of the
rays £ — at = xy, which are known as the characteristics of the equation.

Note that the characteristics are curves in the z-¢ plane satisfying the ordinary differential equations
z'(t) = a, z(0) = zo. If we differentiate q(z,t) along one of these curves to find the rate of change of ¢
along the characteristic, we find that

Sala0,0) = oale(0),0) + 5-alel), 1))
= G tagy (17.4)
= 0,

159
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confirming that ¢ is constant along these characteristics.

17.1.2 Burgers’ equation

Now consider the nonlinear scalar equation

@+ f(@)a =0, (17.5)

where f(g) is a nonlinear function of g. We will assume for the most part that f(g) is a convex
function, f"(q) > 0 for all ¢ (or, equally well, f is concave with f"”(q) < 0 Vq). The convexity
assumption corresponds to a “genuine nonlinearity” assumption for systems of equations that holds
in many important cases, such as the Euler equations. The nonconvex case is also important in some
applications (e.g., in MHD, see Section ??) but is more complicated mathematically.

By far the most famous model problem in this field is Burgers’ equation, in which f(q) = %q2, SO
(17.5) becomes

4 +qqz = 0. (17.6)

Actually this should be called the “inviscid Burgers’ equation”, since the equation originally studied by
Burgers also includes a viscous term:

gt + 94e = €Qaz - (17.7)

This is about the simplest model that includes the nonlinear and viscous effects of fluid dynamics.

Consider the inviscid equation (17.6) with smooth initial data. For small time, a solution can be
constructed by following characteristics. Note that (17.6) looks like an advection equation, but with
the advection velocity ¢ equal to the value of the advected quantity. The characteristics satisfy

z'(t) = q(2(t),1) (17.8)
and along each characteristic g is constant, since
d 0 0] ,
Sa@(®).) = sat),t) + 5oal@(t), )2
= ¢+ Qe (17.9)
0.

Moreover, since ¢ is constant on each characteristic, the slope z'(t) is constant by (17.8) and so the
characteristics are straight lines, determined by the initial data.

If the initial data is smooth, then this can be used to determine the solution g(z, ¢) for small enough
t that characteristics do not cross: for each (x,t) we can solve the equation

x=&+q(£0)t (17.10)
for £ and then

q(z,t) = q(&,0) - (17.11)

17.1.3 Shock formation

For larger t the equation (17.10) may not have a unique solution. This happens when the character-
istics cross, as will eventually happen if ¢,(x,0) is negative at any point. At the time T}, where the
characteristics first cross, the function ¢(z,t) has an infinite slope — the wave “breaks” and a shock
forms. Beyond this point there is no classical solution of the PDE, and the weak solution we wish to
determine becomes discontinuous.



R. J. LeVeque — AMath 585-6 Notes 161

For times beyond the breaking time some of the characteristics have crossed and so there are points
2 where there are three characteristics leading back to ¢ = 0. One can view the “solution” ¢ at such
a time as a triple-valued function. However, the density of a gas cannot possibly be triple valued at a
point. We can determine the correct physical behavior by adopting the vanishing viscosity approach.
The equation (17.6) is a model of (17.7) valid only for small € and smooth g. When it breaks down,
we must return to (17.7). If the initial data is smooth and e very small, then before the wave begins
to break the eq,, term is negligible compared to the other terms and the solutions to the two PDEs
look nearly identical. However, as the wave begins to break, the second derivative term g,, grows much
faster than ¢,, and at some point the eq,, term is comparable to the other terms and begins to play
a role. This term keeps the solution smooth for all time, preventing the breakdown of solutions that
occurs for the hyperbolic problem. This smooth solution has a steep transition zone where the viscous
term is important. As € — 0 this zone becomes sharper and approaches the discontinuous solution
known as a shock. It is this vanishing-viscosity solution that we hope to capture by solving the inviscid
equation.

17.1.4 Weak solutions

A natural way to define a generalized solution of the inviscid equation that does not require differen-
tiability is to go back to the integral form of the conservation law, and say that ¢(z,t) is a generalized
solution if

/ o ty) do = / Caenydet [ Flatent) - Flalea ) d. (1712)

T1 T1 t1

is satisfied for all zy, xs, t1, to.

There is another approach that results in a different integral formulation that is often more conve-
nient to work with. This is a mathematical technique that can be applied more generally to rewrite
a differential equation in a form where less smoothness is required to define a “solution”. The ba-
sic idea is to take the PDE, multiply by a smooth “test function”, integrate one or more times over
some domain, and then use integration by parts to move derivatives off the function ¢ and onto the
smooth test function. The result is an equation involving fewer derivatives on ¢, and hence requiring
less smoothness.

In our case we will use test functions ¢ € C§(IR x IR). Here C} is the space of functions that
are continuously differentiable with compact support. If we multiply ¢: + f» = 0 by ¢(z,t) and then
integrate over space and time, we obtain

o0 p+o00
[ ] e+ or@n dwai=o. (17.13)

Now integrate by parts, yielding

[S SR He's) [e%s)
/0 /_ [peq + ¢a f(q)] da dt = —/_ ¢(z,0)q(x,0) dx . (17.14)

Note that nearly all the boundary terms which normally arise through integration by parts drop out
due to the requirement that ¢ have compact support, and hence vanishes at infinity. The remaining
boundary term brings in the initial conditions of the PDE, which must still play a role in our weak
formulation.

Definition 17.1.1 The function q(z,t) is called a weak solution of the conservation law if (17.14) holds
for all functions ¢ € C} (R x R).

The vanishing-viscosity generalized solution we defined above is a weak solution in the sense of
(17.14), and so this definition includes the solution we are looking for. Unfortunately, weak solutions



162 Hyperbolic Systems and High-Resolution Methods

are often not unique, and so an additional problem is to identify which weak solution is the physically
correct, vanishing-viscosity solution. Again, one would like to avoid working with the viscous equation
directly, but it turns out that there are other conditions one can impose on weak solutions that are
easier to check and will also pick out the correct solution. These are usually called entropy conditions
by analogy with the gas dynamics case, where a discontinuity is physically realistic only if the entropy
of the gas increases as it crosses the shock.

17.1.5 The Riemann problem

The conservation law together with piecewise constant data having a single discontinuity is known as
the Riemann problem. As an example, consider Burgers’ equation ¢; + qq, = 0 with piecewise constant
initial data

| g ifz<0
q(z,0) = { o x>0, (17.15)

The form of the solution depends on the relation between ¢; and g,.

Case 1. ¢; > q,.
In this case there is a unique weak solution,

g ifz<st
q(z,t) = { o if @ st (17.16)
where
s=(q +gqr)/2 (17.17)

is the shock speed, the speed at which the discontinuity travels. A general expression for the shock
speed will be derived below. Note that characteristics in each of the regions where ¢ is constant go into
the shock (see Figure 17.1) as time advances.

@zst

Figure 17.1: Shock wave

Case I1. ¢; < q,.

In this case there are infinitely many weak solutions. Omne of these is again (17.16), (17.17) in
which the discontinuity propagates with speed s. Note that characteristics now go out of the shock
(Figure 17.2(a)) and that this solution is not stable to perturbations. If the data is smeared out slightly,
or if a small amount of viscosity is added to the equation, the solution changes completely.

Another weak solution is the rarefaction wave

q if ¢ <qt
gz, t) =< z/t if gt <z <gq,t (17.18)
qr if > qt.

This solution is stable to perturbations and is in fact the vanishing-viscosity generalized solution (Fig-
ure 17.2(b)).
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(b) 0 0

Figure 17.2: (a) Entropy-violating shock. (b) Rarefaction wave

17.1.6 Shock speed

The propagating shock solution (17.16) is a weak solution to Burgers’ equation only if the speed of
propagation is given by (17.17). The same discontinuity propagating at a different speed would not be
a weak solution.

The speed of propagation can be determined by conservation. The relation between the shock speed
s and the states ¢; and g, is called the Rankine-Hugomniot jump condition:

fla) = flar) = s(a — ar) (17.19)

For scalar problems this gives simply

a —qr lq] *
where [-] indicates the jump in some quantity across the discontinuity. Note that any jump is allowed,
provided the speed is related via (17.20).

For systems of equations, ¢; — ¢ and f(q,) — f(q;) are both vectors while s is still a scalar. Now we
cannot always solve for s to make (17.19) hold. Instead, only certain jumps ¢; — ¢, are allowed, namely
those for which the vectors f(q;) — f(¢r) and ¢; — ¢, are linearly dependent.

For a linear system with f(q) = Aq, (17.19) gives

Alg —ar) = s(@ —ar) , (17.21)

i.e., g — g, must be an eigenvector of the matrix A and s is the associated eigenvalue. For a linear
system, these eigenvalues are the characteristic speeds of the system. Thus discontinuities can propagate
only along characteristics, just as for the scalar advection equation.

17.2 Linear hyperbolic systems

We now begin to investigate systems of equations. We start with constant coefficient linear systems.
Here we can solve the equations explicitly by transforming to characteristic variables. We will also
obtain explicit solutions of the Riemann problem and introduce a “phase space” interpretation that will
be very useful in our study of nonlinear systems.

Consider the linear system

@+ Ag: =0, (17.22)
q(x,O) = QO(I‘) )
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where ¢ : R x R — R™ and A € R™*™ is a constant matrix. This is a system of conservation laws
with the flux function f(q) = Agq. This system is called hyperbolic if A is diagonalizable with real
eigenvalues, so that we can decompose

A=RAR™, (17.23)

where A = diag(A1, A2, ..., Ap) is a diagonal matrix of eigenvalues and R = [ry|ra| - - |rp] is the matrix
of right eigenvectors. Note that AR = RA, i.e.,

Arp =Aprp forp=1,2, ..., m. (17.24)

The system is called strictly hyperbolic if the eigenvalues are distinct. We will always make this
assumption as well.

17.2.1 Characteristic variables

We can solve (17.22) by changing to the “characteristic variables”
v=R1q. (17.25)
Multiplying (17.22) by R~! and using (17.23) gives
v+ Avy, =0 (17.26)

Since A is diagonal, this decouples into m independent scalar equations. Each of these is a constant
coefficient linear advection equation, with solution

vp (2, 1) = vp(z — Apt, 0) . (17.27)
Since v = R™'q, the initial data for v, is simply the pth component of the vector
v(2,0) = R 'qo(2) . (17.28)
The solution to the original system is finally recovered via (17.25):
q(z,t) = Ru(x,t) . (17.29)

Note that the value v, (z,t) is the coeflicient of 7, in an eigenvector expansion of the vector ¢(z,t),
ie., (17.29) can be written out as

q(z,t) = va(ac,t)rp . (17.30)

Combining this with the solutions (17.27) of the decoupled scalar equations gives
q(z,t) = vyp(z = Apt, 0)r, . (17.31)
p=1

Note that g(z,t) depends only on the initial data at the m points 2 — Ayt, so the domain of dependence
is given by D(Z,8) = {z =% — A\pt, p=1, 2, ..., m}.

The curves x = xg + Ayt satisfying 2/(¢) = A, are the “characteristics of the pth family”, or simply
“p-characteristics”. These are straight lines in the case of a constant coefficient system. Note that for
a strictly hyperbolic system, m distinct characteristic curves pass through each point in the z-¢ plane.
The coefficient v,(x,t) of the eigenvector r, in the eigenvector expansion (17.30) of g(z,t) is constant
along any p-characteristic.
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17.2.2 The Riemann Problem

For the constant coefficient linear system, the Riemann problem can be explicitly solved. We will see
shortly that the solution to a nonlinear Riemann problem has a simple structure which is quite similar
to the structure of this linear solution, and so it is worthwhile studying the linear case in some detail.

The Riemann problem consists of the equation ¢; + Ag, = 0 together with piecewise constant initial
data of the form

_Ja x<0
q(z,0) = { G >0, (17.32)

Recall that the general solution to the linear problem is given by (17.31). For the Riemann problem we
can simplify the notation if we decompose ¢; and g, as

a=Y vhry,  g=Y v, (17.33)
p=1 p=1
Then
vl 2 <0
— P
vp(2,0) = { o >0 (17.34)
and so
vl ifr— X\t <0
— P 14
vp(,1) = { o iz — At >0 (17.35)
If we let P(z,t) be the maximum value of p for which 2 — A,t > 0, then
P($,t) m
q(z,t) = Z vy + Z vhry . (17.36)
p=1 p=P(z,t)+1

The determination of ¢(z,t) at a given point is illustrated in Figure 17.3. In the case shown, v; = o]
while vo = vh and v3 = v}. The solution at the point illustrated is thus

q(z,t) = vir +vhrs +vhrs . (17.37)

Note that the solution is the same at any point in the wedge between the 2’ = A\ and 2’ = Xy
characteristics. As we cross the pth characteristic, the value of  — Apt passes through 0 and the
corresponding v, jumps from vé to vy. The other coefficients v; (i # j) remain constant.

The solution is constant in each of the wedges as shown in Figure 17.4. Across the pth characteristic
the solution jumps with the jump given by

[q] = (v, — VL) - (17.38)

Note that these jumps satisfy the Rankine-Hugoniot conditions (17.19), since f(q) = Aq leads to
[] = Alg] = (v}, = vp) Arp = Mp[d]

and )\, is precisely the speed of propagation of this jump. The solution ¢(z,t) in (17.36) can alternatively
be written in terms of these jumps as

g(z,t) = g+ Y. (vj—vbr, (17.39)
Ap<a/t
= q— >, (—vh)r,. (17.40)

Ap>a/t
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Figure 17.3: Construction of the solution to the Riemann problem at (z,%). We trace back along the
p’th characteristic to determine the coeflicient of r, depending on whether this lies in the left state or
right state initially

x/:)\l .T':/\2 xlz)\3
q qr
qi qr
0
Figure 17.4: Values of solution ¢ in each wedge of z—¢ plane:
a = vir + vhre + vhrs, @ = olr + vire + vkrs,
g = virn + vhra + virs, gr = vir1 + vire + virs.

Note that the jump across each discontinuity in the solution is an eigenvector of A

It might happen that the initial jump ¢, — ¢, is already an eigenvector of A, if ¢, — ¢ = (v — v!)r; for
some ¢. In this case vi, = v, for p # i. Then this discontinuity simply propagates with speed A;, and
the other characteristics carry jumps of zero strength.

In general this is not the case, however, and the jump ¢, —g; cannot propagate as a single discontinuity
with any speed without violating the Rankine-Hugoniot condition. We can view “solving the Riemann
problem” as finding a way to split up the jump ¢, — ¢; into a sum of jumps,

r l

G —q=0 =)+ @, =0 ) = aar 4 Qi (17.41)

each of which can propagate at an appropriate speed A; with the Rankine-Hugoniot condition satisfied.

For nonlinear systems we solve the Riemann problem in much the same way: The jump ¢, — ¢; will
usually not have the property that [f] is a scalar multiple of [¢], but we can attempt to find a way to
split this jump up as a sum of jumps, across each of which this property does hold. (Although life is
complicated by the fact that we may need to introduce rarefaction waves as well as shocks.) In studying
the solution of the Riemann problem, the jump in the pth family, traveling at constant speed A,, is
often called the p-wave.
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q2

(a) ql (b)

Figure 17.5: (a) The Hugoniot locus of the state ¢; consists of all states that differ from g; by a scalar
multiple of 1 or r5. (b) Solution to the Riemann problem in the z—¢ plane

17.2.3 The phase plane

For systems of two equations, it is illuminating to view this splitting in the phase plane. This is simply
the ¢1—¢» plane, where ¢ = (¢q1,¢2). Each vector ¢(z,t) is represented by a point in this plane. In
particular, ¢; and g, are points in this plane and a discontinuity with left and right states ¢ and ¢,
can propagate as a single discontinuity only if ¢, — ¢; is an eigenvector of A, which means that the
line segment from ¢; to ¢, must be parallel to the eigenvector r1 or ro. Figure 17.5 shows an example.
For the state ¢ illustrated there, the jump from ¢; to ¢, can propagate as a single discontinuity if and
only if ¢, lies on one of the two lines drawn through ¢; in the drection r; and r5. These lines give the
locus of all points that can be connected to ¢; by a 1-wave or a 2-wave. This set of states is called the
Hugoniot locus. We will see that there is a direct generalization of this to nonlinear systems in the
next chapter.

Similarly, there is a Hugoniot locus through any point ¢, that gives the set of all points ¢; that can
be connected to g, by an elementary p-wave. These curves are again in the directions r; and 7.

For a general Riemann problem with arbitrary ¢; and ¢,, the solution consists of two discontinuities
travelling with speeds A; and Ao, with a new constant state in between that we will call ¢*. By the
discussion above,

q* =vir +vhry (17.42)

so that ¢* — ¢ = ayry and ¢, — ¢* = asrs. The location of ¢* in the phase plane must be where the
1-wave locus through ¢; intersects the 2-wave locus through ¢,. This is illustrated in Figure 17.6a.

Note that if we interchange ¢, and ¢; in this picture, the location of ¢* changes as illustrated in
Figure 17.6(b). In each case we travel from ¢; to ¢, by first going in the direction r; and then in the
direction ro. This is required by the fact that Ay < Ag since clearly the jump between ¢; and ¢* must
travel slower than the jump between ¢* and ¢, if we are to obtain a single-valued solution.

7‘1,

(a) (b)

Figure 17.6: The new state ¢* arising in the solution to the Riemann problem for two different choices
of ¢; and ¢,. In each case the jump from g; to ¢* lies in the direction of the eigenvalue r; corresponding
to the slower speed, while the jump from ¢* to ¢, lies in the direction of the eigenvalue 4
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For systems with more than two equations, the same interpretation is possible but becomes harder to
draw since the phase space is now m dimensional. Since the m eigenvectors r, are linearly independent,
we can decompose any jump ¢, — ¢; into the sum of jumps in these directions, obtaining a piecewise
linear path from ¢; to ¢, in m-dimensional space.

17.3 Finite volume methods

Many high-resolution methods for shock capturing are based on solving Riemann problems between
states in neighboring grid cells. In this chapter we will develop one particular set of methods of this
type. The development of such methods has a long and rich history, and numerous related methods
can be found in the literature. Books such as [ATP84], [Fle88], [GR96], [Hir88], [?], [LeV90], [OB87],
[PT83], [Sod85], [Tor97] contain descriptions of these methods and pointers to the literature.

Rather than viewing Q)" as an approximation to the single value ¢(x;,t,), we will now view it as
approximating the average value of ¢ over an interval of length h = Az = (b — a)/N. We will split the
physical domain [a, b] into N intervals denoted by

Ci= [$i7$i+1] ;

where now z; = a+ (i — 1)h. The value Q7' will approximate the average value over the i’th interval
at time t,:

1 [o 1
Qr ~ —/ q(z,ty) de = —/ q(z,ty) de . (17.43)
h /., h Je,
Notationally it might be better to denote the endpoints of the i’th interval by z;_; /> and x;,, /o, which
would be more symmetric and remind us that Q)7 is an approximation to the average value between
these points. However, the formulas are less cluttered if we stick to integer subscripts.

If g(x,t) is a smooth function, then the integral in (17.43) agrees with the value of ¢ at the midpoint
of the interval to O(h?). By working with cell averages, however, it is easier to use important properties
of the conservation law in deriving numerical methods. In particular, we can insure that the numerical
method is conservative in a way that mimics the true solution, and this is extremely important in
accurately calculating shock waves. This is because hZﬁ\;l Q7 approximates the integral of ¢ over
the entire interval [a,b], and if we use a method that is in conservation form (as described below),
then this discrete sum will change only due to fluxes at the boundaries # = a¢ and x = b. The total
mass within the computational domain will be preserved, or at least will vary correctly provided the
boundary conditions are properly imposed.

The integral form of the conservation law (17.12), when applied to one grid cell over a single time
step, gives

[ awtusydo~ [ atota)do = / " gt di

i C; n

tn1
- / Fla(@ie 1) dt

Rearranging this and dividing by h gives
1 1
7. q(z,tyy1)de = n. q(z,t,) dz (17.44)
1 1 1 tn+1 "
ARy NN
tn t1

This tells us exactly how the cell average of g from (17.43) should be updated in one time step. In
general, however, we cannot evaluate the time integrals on the right-hand side of (17.44) exactly since
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q(z;,t) varies with time along each edge of the cell, and we don’t have the exact solution to work with.
But this does suggest that we should develop numerical methods in the flux-differencing form

k
Q?+1 =Qr - E(Fﬁl-l —F"), (17.45)

where F}" is some approximation to the average flux along z = z;:

1 [tets
Fl'w o / Fq(zsi, 1)) dt . (17.46)
tn

If we can approximate this average flux based on the values ", then we will have a fully-discrete
method.

Since information propagates with finite speed, it is reasonable to first suppose that we can obtain
F" based only on the values @} ; and @}, the cell averages on either side of this interface. Then we
might use a formula of the form
Pl = FQL..QY)

2

where F' is some numerical flux function. The method (17.45) then becomes

Q= QF — SPQE Q1) — FQI1, QD)) (17.47)

The specific method obtained depends on how we choose the formula F'; but in general any method of
this type is an explicit method with a 3-point stencil. Moreover, it is said to be in conservation form,
since it mimics the property (17.44) of the exact solution. Note that if we sum hQ?"" from (17.45) over
any set of cells we obtain

J J
k
hY Qi =hy QF - (Fjyy — FY) - (17.48)
=T =1

The sum of the flux differences cancels out except for the fluxes at the extreme edges. Over the full
domain we have exact conservation except for fluxes at the boundaries. (Boundary conditions are
discussed at the end of this chapter.)

Note that (17.47) can be viewed as a direct finite difference approximation to the conservation law
q: + f(q)z = 0, since rearranging it gives

Q?+1_Q?+F(Q?+11Q?)_F( Qi)
k h

Many methods can be equally well viewed as finite difference approximations to this equation or as
finite volume methods. In obtaining a method in conservation form, the above discussion suggests
that we should always discretize the conservation law in this form, rather than in the quasi-linear form
q: + f'(q)gz = 0, for example.

=0.

17.4 Importance of conservation form — incorrect shock speeds

Using methods in conservation form is particularly important when solving problems with shocks or
other discontinuities in the solution, as a nonconservative method may give a numerical solution that
looks reasonable but is entirely wrong. For example, Burgers’ equation

1
a + <§q2> =0 (17.49)

can be discretized by the upwind conservative method

art—ar -4 (z@r - @)
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Figure 17.7: (a) True and computed solutions to Burgers’ equation using a conservative upwind method.
(b) True and computed solutions to Burgers’ equation using a nonconservative upwind method

Figure 17.7(a) shows the resulting numerical solution for a shock wave resulting between states 1.2 and
0.4 propagating at speed 0.8. The numerical solution is slightly smeared about the correct location.
On the other hand if we discretize the quasilinear form of Burgers’ equation

gt +qgz =0 (17.50)

using the nonconservative upwind method

QI = Q) - TQIQE - QL)

we obtain the results seen in Figure 17.7(b). The shock is moving at the wrong speed! This happens
because the equations (17.49) and (17.50) are equivalent for smooth solutions but not for problems
with shock waves. This example is discussed in more detail in [LeV90].

17.5 Numerical flux functions

Given that we want to use a method in conservation form, how should we define F(q;, ¢,), the average
flux at a point based on data ¢; and ¢, to the left and right of this point? A first attempt might be the
simple average

Flaar) = 5(F@) + Flar)

Using this in (17.47) would give

k
QT =QF — 55 Q) — F(QY) -

In general, however, this method turns out to be unconditionally unstable for any value of k/h.
If we instead use the modified flux

1 h
Fla,ar) = 5(f(@) + f(ar) = 5@ —a) , (17.51)
then we obtain the Lax-Friedrichs method,
Qi = 5( i1+ Qi) — ﬁ(f( 1) — Q1)) - (17.52)

Note that the additional term we have added in (17.51) is a diffusive fluz based on an approximation

to %qw, and hence this modification amounts to adding some artificial viscosity to the centered flux
formula.
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(a) (b)

Figure 17.8: Solving the Riemann problems at each interface for Godunov’s method. (a) With Courant
number less than 1/2 there is no interaction of waves. (b) With Courant number less than 1 the
interacting waves do not reach the cell interfaces, so the fluxes are still constant in time

17.6 Godunov’s method

Many of the methods we will explore in detail are based on solving the Riemann problem between the
states ¢; and ¢, in order to define the numerical flux F(g;, ¢,). To see how this comes about, it is useful
to view the data Q™ at time ¢, as defining a piecewise constant function ¢"(x,t,) which has the value
Q7 for all z in the interval C;.  Suppose we could solve the conservation law ezactly over the time
interval [ty, tp+1] with initial data ¢"(x,t,). Call the resulting function ¢"(z,t) for ¢, < t < tp41.
Then we might consider defining the numerical flux F}* in (17.45) by

tnt1
=g [T r@ena. (17.53)

n

This integral is trivial to compute compared to the integral (17.46), at least provided the time step
k is small enough, because of the fact that with piecewise constant initial data we can find the exact
solution easily by simply piecing together the solutions to each Riemann problem defined by the jump
at each interface. Figure 17.8 illustrates this for the case of a linear hyperbolic system of 2 equations.

The crucial fact now is that the solution to the Riemann problem at z; is a similarity solution, which
is constant along each ray (v — x;)/t =constant. In general, let ¢*(q;, gr) denote the exact solution to
the Riemann problem along the ray x/t = 0, obtained when we use data

e ifax<O
q(:v,O)_{ ¢ fz>0.
Then we have
q" (i, t) = " Q1. QF) (17.54)

for all t € [ty, tny1], provided that the time step is small enough that waves from the Riemann problems
do not travel farther than distance h in this time step. If this condition is violated, then the value
along ¢ = z; may change after waves from neighboring Riemann problems pass this point. For a linear
system, the maximum wave speed is max, |AP|, where AP are the eigenvalues of A, so this condition
requires that

km;),x [AP| < h.

We recognize this as being simply the CFL condition for a 3-point method, a condition which we know
must be satisfied anyway for stability.

The method obtained by the procedure outlined above is known as Godunov’s method, and was
introduced in [God59] as an approach to solving the Euler equations of gas dynamics in the presence
of shock waves.
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For the simplest case of scalar advection, solving the Riemann problem between states ¢, and g,
gives

* g ifu>0
Q(Qh‘]r)_{ o ifu<0.

If w = 0 then ¢* is not well defined, as the discontinuity is stationary along the ray x/t = 0. This is no
cause for concern, however, since all we really require is the flux value f(¢*) = ug*, and if u = 0 then
f(g*) = 0 regardless of how we define ¢*. So we obtain the numerical flux

Fla, ¢r) = uq™(a, ) = { Zgi ii Z ; 8_
This can also be written in the compact form
F(q,q) = v q +u"g, (17.55)
using the notation
u = max(u,0) , u~ = min(u,0) . (17.56)

Using this in the conservative method (17.47) gives the upwind method. Note that solving the
Riemann problem at the interface gives a flux that is defined by the value of @™ on the upwind side of
the interface, so that the method reduces to one-sided differencing in the proper direction. The method
takes the form

n k n n .
ntl _ [ QF — ru@ —Qi,) fu>0 1757
@ { Qr — Eu(@Qr, —QF) fu<0 (17.57)

as introduced in Section 14.3.

This method is easily generalized to nonlinear systems if we can solve the nonlinear Riemann problem
at each cell interface, and this method gives the natural generalization of the first order upwind method
to general systems of conservation laws.

Recall that Q7 represents an approximation to the cell average of ¢(x,t,) over cell C;,

1 Tit1
h x

i

and the idea is to use the piecewise constant function defined by these cell values as initial data ¢"(x, t,,)
for the conservation law. Solving over time k with this data gives a function ¢"(x,t,+1) that is then
averaged over each cell to obtain

1 Tit1
= Tt (17.58)

If the time step k is sufficiently small, then the exact solution ¢"(x,t) can be determined by piec-
ing together the solutions to the Riemann problem arising from each cell interface, as indicated in
Figure 17.8(a).

Recall from Section 17.6 that we do not need to perform the integration in (17.58) explicitly, which
might be difficult since ¢"(x,t,+1) may be very complicated as a function of x. Instead, we can use
the fact that ¢"(z;,t) is constant in time along each cell interface so that the integral (17.53) can be
computed exactly. Hence the cell average is updated by (17.47) with

Flqi,q) = f(a" (@, ar)) - (17.59)

where ¢*(qi, q,) is the solution to the Riemann problem between ¢; and g,, evaluated along z/t = 0.
In Figure 17.8(a) the time step was taken to be small enough that there was no interaction of waves
from neighboring Riemann problems. This would be necessary if we wanted to construct the solution
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Figure 17.9: Five possible configurations for the solution to a scalar conservation law, in the z-t plane.
(a) Left-going shock, ¢* = ¢,. (b) Left-going rarefaction, ¢* = ¢,. (¢) Transonic rarefaction, ¢* = qo.
(d) Right-going rarefaction, ¢* = ¢;. (e) Right-going shock, ¢* = ¢

at ¢"(x,tp+1) in order to explicitly calculate the cell averages (17.58). However, in order to use the
flux formula (17.59) it is only necessary that ¢"(z;,t) remain constant in time over the entire time step,
which allows a time step roughly twice as large, as indicated in Figure 17.8(b). If smax represents the
largest wave speed that is encountered then on a uniform grid with the cell interfaces distance h apart,
we must require

Fsmax (17.60)
h
in order to insure that the formula (17.59) is valid. Note that this is precisely the CFL condition
required for stability of this 3-point method, as discussed in Chapter 15. In general smaxk/h is called
the Courant number. Figure 17.8(a) shows a case where the Courant number is less than 1/2 while
Figure 17.8(b) shows the Courant number close to 1. Note that for a linear system of equations,
Smax = max, |A?| and this agrees with our previous definition of the Courant number.

17.6.1 Godunov’s method on scalar equations

On a convex scalar equation with f'(¢) an increasing function of ¢, the solution to the Riemann problem
between ¢; and ¢, is either a shock traveling at speed s = [f]/[q] (if ¢/ > ¢,-) or a rarefaction wave (if
qi < qr) bounded by z/t = f'(q;) on the left and z/t = f'(g,) on the right. Five possible configurations
in the z-t plane are shown in Figure 17.9. In most cases the solution ¢* along 2/t = 0 will be either g,
(if the solution is a shock or rarefaction wave moving entirely to the left, Figure 17.9(a) or (b)), or ¢
(if the solution is a shock or rarefaction wave moving entirely to the right, Figure 17.9(d) or (e)).

The only case where ¢* has a different value than ¢; or ¢, is if ¢; < g9 < ¢, where ¢q is the value for
which f'(go) = 0. This is called the stagnation point since the value gy propagates with speed 0. It
is also called the sonic point since in gas dynamics the eigenvalue u + ¢ takes the value 0 only when
the fluid speed is equal to the sound speed. The solution to the Riemann problem in this case, shown
in Figure 17.9(c), consists of a rarefaction wave that is partly left-going and partly right-going. This is
called a transonic rarefaction since in gas dynamics the fluid is accelerated from a subsonic velocity
to a supersonic velocity through such a rarefaction. In a transonic rarefaction the value along x/t =0
is simply qq-

We thus see that the Godunov flux function for a convex scalar conservation law is

flg) if ¢ >qgoand s>0
F(q,q-) =< flgr) if ¢ <gqoand s <0 (17.61)
fleo) if ¢ <qo<gr-

17.7 High-resolution methods

Godunov’s method is at best first order accurate on smooth solutions and generally gives very smeared
approximations to shock waves or other discontinuities. In this section we will see how this method
can be extended to a method that gives second-order accuracy on smooth flow, but which avoids
nonphysical oscillations near discontinuities. The key is to use a better representation of the solution,
say piecewise linear instead of the piecewise constant representation used in Godunov’s method, but
to form this reconstruction carefully by paying attention to how the data behaves nearby. In smooth
regions the finite-difference approximation to the slope can be used to obtain better accuracy, but near
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a discontinuity the “slope” computed by subtracting two values of ) and dividing by h may be huge
and meaningless. Using it blindly in a difference approximation will introduce oscillations into the
numerical solution.

One particular method will be developed here in a framework that can be interpreted as a correction
phase following the solution of Riemann problems and construction of Godunov fluxes. Many other
approaches can be found in the literature and a couple of these are briefly described in Section ?7.

To introduce these ideas we will first consider the scalar advection equation

qt+qu=0

with 4 > 0, in which case Godunov’s method reduces to the simple first-order upwind method

QI = Q) - Tu(Q) - QL)

After developing a high-resolution version of this method, the ideas can be extended to systems of
equations and nonlinear problems.

17.7.1 Reconstruct—Solve—Average

There is another interpretation of Godunov’s method that will be useful in developing higher-order
accurate methods of this type. Recall that ¢"(z,t,) denotes the piecewise constant function with value
Q7 in cell C;. We defined the numerical flux of Godunov’s method by advancing the solution with this
data to obtain the interface value §"(z,t) over the time interval [¢,,,t,4+1]. Another way to describe
Godunov’s method is to take the advanced solution ¢"(z, ¢,+1) at the end of the time step, and average
this function over grid cell C; to obtain

Q?—H = %/ (j"({l},tn+1)dw .

C;
It follows from the integral form of the conservation law that this gives exactly the same value as the
flux-differencing method, though implementing it in this form would be more difficult since ¢"(x, t,+1)
is not constant over C;, and this integral would be difficult to evaluate directly in general. The beauty
of the flux-differencing approach is that we do not need to evaluate this integral, but can find it by
integrating the flux function, which is constant on the time interval of integration.

But in generalizing Godunov’s method to higher-order methods, it is useful to consider what would
happen if we took this approach with a different choice of §"(x, t,,), that better approximates a smooth
function. We can think of ¢"(xz,t,) as a reconstruction of a function from the discrete values @7, the
cell averages of the function. Instead of a piecewise constant function we might reconstruct a piecewise
linear function or some other function ¢"(wz,t,). We can then generalize Godunov’s method to an
algorithm that takes the following general form in each time step:

Algorithm RSA (Reconstruct-Solve-Average):
1. Reconstruct a function ¢"(z,t,) defined for all « from the cell averages Q7.

2. Solve the hyperbolic equation exactly (or approximately) with this initial data to obtain ¢"(z, t,,+1)
a time At later.

3. Average this function over each grid cell to obtain

1 [
o= [ Pt o,
C

i

With a piecewise constant reconstruction we can solve the problem in Step 2 exactly, giving Go-
dunov’s method. For linear systems we can solve this problem exactly even with more complicated
initial data, such as the piecewise linear function considered in the next section. For nonlinear problems
we may not be able to solve the problem in Step 2 exactly, but we will still be able to improve the
accuracy by using an approximate solution together with piecewise linear data.
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17.7.2 Piecewise linear reconstruction

To achieve better than first-order accuracy, we must use a better reconstruction than a piecewise
constant function. From the cell averages ()7 we can construct a piecewise linear function of the form

§(z,ty) = QF + ol (x — &)  for m; <@ < g1, (17.62)
where
_ 1 1

is the center of the i’th grid cell and o is the slope on the i’th cell. The linear function defined
by (17.62) on the i’th cell is defined in such a way that its value at the cell center z; is Q7. More
importantly, the average value of §"(z,t,) over cell C; is Q} (regardless of the slope o), so that the
reconstructed function has the cell average 7. This is crucial in developing conservative methods
for conservation laws. Note that Steps 2 and 3 are conservative in general, and so Algorithm RSA is
conservative provided we use a conservative reconstruction in Step 1, as we have in (17.62). Later we
will see how to write such methods in the standard conservation form (17.45).

For the scalar advection equation ¢; + ug, = 0, we can easily solve the equation with this data, and
compute the new cell averages as required in Step 3 of Algorithm RSA. We have

q"(x,tni1) = " (x — uk,tn) .

Until further notice we will assume that u > 0 and present the formulas for this particular case. The
corresponding formulas for u© < 0 should be easy to derive, and in Section 17.7.7 we will see a better
way to formulate the methods in the general case.

Suppose also that |uk/h| < 1. Then it is straightforward to compute (see also Section 17.7.7) that

k 1 k 1
QI = % ( T+ E(h — uk)ai"_1> + (1 - %) (Q? - 5“’”?)

uk 1 uk

Q1 = 22(Q7 - Qi) — 55 (h—uk) (0] = olLy) (17.64)

17.7.3 Choice of slopes

Choosing o = 0 gives Godunov’s method (the upwind method for the advection equation). To obtain
a second-order accurate method we want to choose nonzero slopes in such a way that o' approximates
the derivative g, over the i’th grid cell. Three obvious possibilities are:

noo—Qn
Centered slope: o = % (Fromm) , (17.65)
. . n __ Q:l - ?71 .
Upwind slope: ol = A (Beam-Warming) , (17.66)
no_Qn
Downwind slope: ol = % (Lax-Wendroff) . (17.67)

The centered slope might seem like the most natural choice to obtain second order accuracy, but in fact
all three choices give the same formal order of accuracy, and it is the other two choices that give methods
we have already derived in other ways. Only the downwind slope results in a centered 3-point method,
and this choice gives the Lax-Wendroff method (14.16). The upwind slope gives a fully-upwinded
3-point method, which is simply Beam-Warming.

The centered slope may seem the most symmetric choice at first glance, but due to the fact that the
reconstructed function is then advected in the positive direction, the final updating formula turns out
to be a non-symmetric 4-point formula, which is known as Fromm’s method.
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@ o)

Figure 17.10: (a) Grid values Q" and reconstructed ¢"(-,t¢,) using Lax-Wendroff slopes. (b) After
advection with ku = h/2. The dots show the new cell averages Q" *. Note the overshoot

17.7.4 Oscillations

Second-order methods such as Lax-Wendroff (or Beam-Warming or Fromm’s method) give oscillatory
approximations to discontinuous solutions. This can be easily understood using the interpretation of
Algorithm RSA.

Consider the Lax-Wendroff method, for example, applied to piecewise constant data with values

P B
QF = { 0 ifi>J.
Choosing slopes in each grid cell based on the Lax-Wendroff prescription (17.67) gives the piecewise
linear function shown in Figure 17.10(a). The slope o7 is nonzero only for i = J.
The function §"(z,t,) has an overshoot with a maximum value of 3/2 regardless of h. When we
advect this profile a distance uk, and then compute the average over the J’th cell, we will get a value

that is greater than 1 for any k& with 0 < uk < h. The worst case is when uk = h/2, in which case
G"(x,ty41) is shown in Figure 17.10(b) and Q?‘H = 9/8. In the next time step this overshoot will be

accentuated, while in cell J — 1 we will now have a positive slope, leading to a value Q?f} that is less
than 1. This oscillation then grows with time.

The slopes proposed in the previous section were based on the assumption that the solution is
smooth. Near a discontinuity there is no reason to believe that introducing this slope will improve the
accuracy. On the contrary, if one of our goals is to avoid nonphysical oscillations, then in the above
example we must set the slope to zero in the J’th cell. Any ¢} < 0 will lead to Q?H > 1, while a
positive slope wouldn’t make much sense. On the other hand we don’t want to set all slopes to zero
all the time, or we simply have the first-order upwind method. Where the solution is smooth we want
second order accuracy. Moreover, we will see below that even near a discontinuity, once the solution is
somewhat smeared out over more than one cell, introducing nonzero slopes can help keep the solution
from smearing out too far, and hence will significantly increase the resolution and keep discontinuities
fairly sharp, as long as care is taken to avoid oscillations.

This suggests that we must pay attention to how the solution is behaving near the i’th cell in choos-
ing our formula for ¢?*. (And hence the resulting updating formula will be nonlinear even for the linear
advection equation!). Where the solution is smooth we want to choose something like the Lax-Wendroff
slope. Near a discontinuity we may want to “limit” this slope, using a value that is smaller in magni-
tude in order to avoid oscillations. Methods based on this idea are known as slope-limiter methods.
This approach was introduced by van Leer in a series of papers [van73] through [van79], where he
developed the MUSCL scheme for nonlinear conservation laws (Monotonic Upstream-centered Scheme
for Conservation Laws). The same idea in the context of flux limiting, reducing the magnitude of the
numerical flux to avoid oscillations, was introduced in the flux-corrected transport (FCT) algo-
rithms of Boris and Book [BB73]. We can view this as creating a hybrid algorithm that is second order
accurate in smooth regions but which reduces to a more robust first-order algorithm near discontinu-
ities. This idea of hybridization was also used in early work of Harten and Zwas [HZ72]. An enormous
variety of methods based on these principles have been developed in the past two decades. One of the
algorithms of this type that is best known in the astrophysics community is the piecewise parabolic
method (PPM) of Woodward and Colella[CW84], which uses a piecewise quadratic reconstruction,
with appropriate limiting.
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17.7.5 Total variation

How much should we limit the slope in a piecewise linear reconstruction? Ideally we would like to have
a mathematical prescription that will allow us to use the Lax-Wendroff slope whenever possible, for
second-order accuracy, while guaranteeing that no non-physical oscillations will arise. To achieve this
we need a way to measure “oscillations” in the solution. This is provided by the notion of the total
variation of a function. For a grid function @ we define

TV(Q) = Y |Qi— Qi (17.68)

i=—00

For an arbitrary function ¢(z) we can define

N
TV(g) =sup »_|q(&) — q(&-1) (17.69)
Jj=1
where the supremum is taken over all subdivisions of the real line —co = & < & < -+ < €y = .
Note that for the total variation to be finite @ or ¢ must approach constant values v+ as & — %o0.

The true solution to the advection equation simply propagates at speed u with unchanged shape,
so that the total variation TV (g(+,t)) must be constant in time. A numerical solution to the advection
equation may not have constant total variation, however. If the method introduces oscillations, then we
would expect the total variation of Q™ to increase with time. We can thus attempt to avoid oscillations
by requiring that the method does not increase the total variation:

Definition 17.7.1 A 2-level method is called total variation diminishing (TVD) if, for any set of
data Q", the values Q™' computed by the method satisfy

TV(Q"™) < TV(Q™) . (17.70)

For a scalar conservation law, the exact solution has nonincreasing variation and so this is a reason-
able condition to impose on a numerical method. Harten [Har83] introduced the use of this criterion in
developing and analyzing numerical methods. For a scalar equation, steps 2 and 3 of Algorithm RSA
are TVD, and so the overall method is TVD provided that the reconstruction step does not increase
the variation, i.e., as long as

TV (§") < TV(Q") . (17.71)

17.7.6 Slope-limiter methods

Now let’s return to the derivation of numerical methods based on piecewise linear reconstruction, and
consider how to “limit” the slopes so that (17.70) is satisfied. Note that setting o = 0 works, since
the piecewise constant function has the same TV as the discrete data. Hence the first-order upwind
method is TVD for the advection equation. Hence upwind may smear solutions but cannot introduce
oscillations, a familiar result.

One choice of slope that gives second-order accuracy for smooth solutions while still satisfying the
TVD property is the minmod slope

0} = minmod ( (17.72)

QF Qi QY — Q7
h ’ h ’

where the minmod function of two arguments is defined by

a if |a| < |bl and ab >0
minmod(a,b) =< b if |b] < |a| and ab >0 (17.73)
0 ifab<0.
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Figure 17.11: Tests on the advection equation with different limiters. All results are at time ¢t = 1, after
one revolution with periodic boundary conditions

Note that if @ and b have the same sign then this selects the one which is smaller in modulus, else it
returns zero.

Rather than defining the slope on the i’th cell by always using the downwind difference (which would
give Lax-Wendrofl), or by always using the upwind difference (which would give Beam-Warming), the
minmod method compares the two slopes and chooses the one which is smaller in magnitude. If the
two slopes have different sign, then the value @}’ must be a local maximum or minimum, and it is easy
to check in this case that we must set o' = 0 in order to satisfy (17.71).

Figure 17.11 shows a comparison of the upwind, Lax-Wendroff, and minmod methods for an ad-
vection problem with initial data consisting of both a smooth hump and a square wave. The advec-
tion velocity is u = 1 and periodic boundary conditions are used on [0,1] so that at integer times
t=0, 1, 2, ... the solution should agree with the initial data. The figure shows solutions at ¢ = 1 on
a grid with » = 0.01 and k& = 0.005 (so the Courant number is 0.5 — better results with all methods
would be obtained with a Courant number closer to 1). We see that the minmod method does a fairly
good job of maintaining good accuracy in the smooth hump and also sharp discontinuities in the square
wave, with no oscillations.

Sharper resolution of discontinuities can be achieved with other limiters that do not reduce the
slope as severely as minmod near a discontinuity. One popular choice is the monotonized central-
difference limiter (M C-limiter), which was proposed by van Leer [van77]:

no__Qn n_Qmn nooo_Qn
o?:minmod((%), 2<Q’ 3 ’1>, 2( "Hh Q’)) .

This compares the central-difference of Fromm’s method with twice the one-sided slope to either side.
In smooth regions this reduces to the centered slope of Fromm’s method but near discontinuities it gives
sharper resolution than minmod while remaining TVD.

17.7.7 Flux formulation with piecewise linears

The slope-limiter methods described above can be written as flux-differencing methods of the form
(17.45). The updating formulas derived above can be manipulated algebraically to determine what the
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numerical flux function must be. Alternatively, we can derive the numerical flux by computing the
exact flux through the interface z; using the piecewise linear solution §"(z,t), by integrating ug"(z;,t)
in time from ¢, to t,41. For the advection equation this is easy to do and we find that

n L[t ~n
Er = % uG" (z;,t) dt
tn

1
= uQi 4+ §u(h — ku)o}' 4 .

Using this in the flux-differencing formula (17.45) gives

n n  ku, . n 1 ku n n
Q[H =Qi - T(Qz -Qi ) - §T(h_ ku)(of —0i’1)

which agrees with (17.64).
If we also consider the case u < 0, then we will find that in general the numerical flux for a slope-
limiter method is

=

2

{ uQ? 4+ su(h—ku)o?,  if u>0 (17.74)

u@? — u(h + ku)o? if u<0,

where o' is the slope in the i’th cell C;, chosen by one of the formulas discussed previously.

Rather than associating a slope o7 with the i’th cell, the idea of writing the method in terms of
fluxes between cells suggests that we should instead associate our approximation to ¢, with the cell
interface at x; where F}" is defined. Across the interface z; we have a jump

AQY = QF — Qi (17.75)
and this jump divided by h gives an approximation to g,. This suggests that we write the flux (17.74)
as
ku

1
F'=u QI +utQl, + §|u| (1 aie

) 5 (17.76)

where u™ are defined in (17.56). If 67 is the jump AQ? itself then this gives the Lax-Wendroff method.
We see that the Lax-Wendroff flux can be interpreted as a modification to the upwind flux (17.55).
This observation is crucial in the development of high-resolution methods.

17.7.8 Flux limiters

From the above discussion it is natural to view Lax-Wendroff as the basic second-order method based
on piecewise linear reconstruction. Other second-order methods have fluxes of the form (17.76) with
different choices of §7'. The slope-limiter methods can then be reinterpreted as flux-limiter methods
by choosing 6% to be a limited version of (17.75). In general we will set

;' = (67 )AQT (17.77)
where
n_ AQ7
o = A (17.78)

The index I here is used to represent the interface on the upwind side of z;:

1:{"1 if u>0 (17.79)

i+1 if u<O0.
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The ratio 8 can be thought of as a measure of the smoothness of the data near z;. Where the data is
smooth we expect 87" ~ 1 (except at extrema). Near a discontinuity we expect that 6" may be far from
1.

The function ¢(6) is the flux-limiter function, whose value depends on the smoothness. Setting
() = 1 for all 0 gives the Lax-Wendroff method, while setting ¢(6) = 0 gives upwind. More generally
we might want to devise a limiter function ¢ that has values near 1 for 6 near 1, but which reduces (or
perhaps increases) the slope where the data is not smooth.

There are many other ways one might choose to measure the smoothness of the data besides the
variable 6 defined in (17.78). However, the framework proposed above results in very simple formulas
for the ¢ function corresponding to many standard methods, including all the methods discussed so far.

In particular, note the very nice feature that choosing

6(0) =6 (17.80)
results in (17.77) becoming
o7 = (S ) Aer = ey

Hence this choice results in the jump at the interface upwind from z; being used to define 6" instead of
the jump at this interface. As a result, the method (17.76) with the choice of “limiter” (17.80) reduces
to the Beam-Warming method.

Since the centered difference (17.65) is the average of the one-sided slopes (17.66) and (17.67), we
also find that Fromm’s method can be obtained by choosing

#(6) = 5(1+6) (17.81)

Also note that ¢(f) = 2 corresponds to using 6! = 2AQP, i.e., twice the jump at this interface,
while ¢(f) = 26 results in using twice the jump at the upwind interface. Recall that these are necessary
ingredients in some of the slope limiters discussed in Section 17.7.6.

Translating the various slope limiters into flux-limiter functions, we find the following expressions

for some standard methods:

Linear methods:
upwind : o) =0
Lax-Wendroff : o0) =1
Beam-Warming : o0) =146
$(0) = 3

Fromm : =3(1+6)
High-resolution (17.82)
limiters:
minmod : ¢(8) = minmod(1, 9)
superbee : ¢(6) = max(0, min(1,26), min(2,0))
MC : ¢(6) = max(0, min((1+46)/2, 2, 26))
van Leer : o(0) = fi—‘zl‘

A wide variety of other limiters have also been proposed in the literature.

17.7.9 TVD limiters

For simple limiters such as minmod, it is clear from the derivation as a slope-limiter (Section 17.7.6) that
the resulting method is TVD, since it is easy to check that (17.71) is satisfied. For more complicated
limiters we would like to have an algebraic proof that the resulting method is TVD. A fundamental tool
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Figure 17.12: Limiter functions ¢(6). (a) The shaded region shows where function values must lie for
the method to be TVD. The second-order linear methods have functions ¢(6) that leave this region.
(b) The shaded region is the Sweby region of second-order TVD methods. The minmod limiter lies
along the lower boundary. (c¢) The superbee limiter lies along the upper boundary. (d) The MC limiter
is smooth at ¢ =1

in this direction is a theorem of Harten [Har83], which can be used to derive explicit algebraic conditions
on the function ¢ required for a TVD method. Sweby [Swe84] derived explicit constraints for limiter
functions and shows that we require (see also [LeV90]):

0 < ¢(8) < minmod(2,26) . (17.83)

This defines the TVD region in the 6-¢ plane: the curve ¢(#) must lie in this region, which is shown
as the shaded region in Figure 17.12(a). This figure also shows the functions ¢(#) from (17.82) for the
Lax-Wendroff, Beam-Warming, and Fromm methods. All of these functions lie outside the TVD region
for some values of 8, and these methods are not TVD. This graphical analysis of ¢ was first presented
by Sweby [Swe84], who analyzed a wide class of flux-limiter methods.

Note that for any second-order accurate method we must have ¢(1) = 1. Sweby found, moreover,
that it is best to take ¢ to be a convex combination of ¢ = 1 (Lax-Wendroff) and ¢ = 6 (Beam-
Warming). Other choices apparently give too much compression, and smooth data such as a sine wave
tends to turn into a square wave as time evolves. Imposing this additional restriction gives the “second
order TVD” region of Sweby which is shown in Figure 17.12(b).

The “high-resolution” limiter functions from (17.82) are all seen to satisfy the constraints (17.83),
and these limiters all give TVD methods. The ¢ functions are graphed in Figure 17.12. Note that
minmod lies along the lower boundary of the Sweby region while superbee lies along the upper boundary.
The fact that these functions are not smooth at # = 1 corresponds to the fact that there is a switch in
the choice of one-sided approximation used as 6 crosses this point. This can lead to a loss in accuracy
near inflection points. For full second order accuracy we would like the function ¢ to be smooth near
# =1, as for the MC limiter. The van Leer limiter is an even smoother version of this.
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17.7.10 Linear systems

The slope-limiter or flux-limiter methods can also be extended to systems of equations. This is most
easily done in the flux-limiter framework, and will be illustrated first for the linear system ¢; + Aq, = 0.

We can write A = AT + A, where A = RAR™! is decomposed based on the sign of each eigenvalue:
At = RATR™! and A= = RA—R~! where AT, for example, has the positive part of each A on the
diagonal, so negative eigenvalues are replaced by zero. Using this, Godunov’s method for a linear system
(the generalization of the upwind method) can be written in terms of the flux function

F(Qi—1,Q:) = (ATQi—1 + A~ Q) . (17.84)

The Lax-Wendroft method (14.16) can also be written in flux-differencing form (17.45) if we define
the flux by

F(Qi 1,Q0) = JAQi 1 +Q0) + 32 4%(Qi— Qi 1) (17.85)

We can rewrite this as
1 k
F(Qi-1,Q0) = (47 Q-+ 47Q) + 5141 (1= 1141) (@i = Qicn) (17.50)

where |[A] = AT — A~.

In the form (17.86), we see that the Lax-Wendroff flux can be viewed as being composed of the
Godunov flux (17.84) plus a correction term, just as for the scalar advection equation. To define a flux-
limiter method we must limit the magnitude of this correction term based on how the data is varying.
But for a system of equations, AQ; = Q; — Q;—1 is a vector and it is not so clear how to compare this
vector with the neighboring jump AQ;_; or AQ;11 to generalize (17.77), nor which neighboring jump
to consider, since the “upwind” direction is different for each eigen-component. The solution, of course,
is that we must decompose the correction term in (17.86) into eigen-components and limit each scalar
eigen-coefficient separately based on the algorithm for scalar advection.

We can rewrite the correction term as

1 k 1 k U
HA (1 _ E|A|> (@ - Qi) = 114 (1 . E|A|> St

where

(Qi — Qi—1) = Zapr
i=1

gives the decomposition of the jump in ) across this interface into eigenvectors of A, i.e., the solution
of the Riemann problem.

The flux-limiter method is defined by replacing the scalar coefficient o} by a limited version, based
on the scalar formulas of Section 17.7.8. We set

af = alo(6) (17.87)
where
p . .
p_ . =1 i A>0
0; = of with I = { i1 i AP <0 (17.88)

and ¢ is one of the limiter functions of Section 17.7.8. The flux function for the flux-limiter method is
then

F=ATQio1 +A~Q; + Fy (17.89)
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where the first term is the upwind flux and the correction flux F; is defined by
F, = 1|A| 1— E|A| iaﬂr? (17.90)
T2 h — '

Note that in the case of a scalar equation, we can take r' = 1 as the eigenvector of A = u, so that
AQ; = a} which is what we called §; in Section 17.7.8. The formula (17.89) then reduces to (17.76).
For a system of equations, the method just presented can also be obtained by diagonalizing the linear
system and applying the scalar flux limiter method to each resulting advection equation. This is what
we are doing at each cell interface by solving the Riemann problem.

Also note that the flux F; depends not only on Q;—1 and @;, but also on ();—» and ;41 in general,
because neighboring jumps are used in defining the limited values &} in (17.90). The flux-limiter method
thus has a 5-point stencil rather than the 3-point stencil of Lax-Wendroff. This is particularly important
in specifying boundary conditions (see Section 17.8).

17.7.11 Implementation and CLAWPACK

For the constant coefficient linear system, we could compute the matrices AT, A=, and | 4| once and
for all and compute the fluxes directly from the formulas given above. However, with limiters we must
solve the Riemann problem at each interface to obtain a decomposition of AQ; into waves a?r? and
wave speeds AP and these can be used directly in the computation of Q?H without ever forming the
matrices. This approach also generalizes directly to nonlinear systems of conservation laws, where we
do not have a single matrix A but can still solve a Riemann problem at each interface for waves and
wave speeds. This generalization is discussed briefly in the next section.

To accomplish this most easily, note that if we use the flux (17.89) in the flux-differencing formula
(17.45) and then rearrange the upwind terms, we can write the formula for Q?H as

k k, -
Qi =Qp - E(A+AQ1' + ATAQit1) — E(Fz’+1 - F), (17.91)

where F; is given by (17.90). Here we drop the superscript n from the current time step since we will
need to use superscript p below to denote the wave family. Each of the terms in this expression can be
written in terms of the waves ar? and wave speeds AP:

ATAQ; = ) _(\W)Talr?, (17.92)
p=1

ATAQ: = D (W) alr?, (17.93)
p=1

and
F=2 §m AP (1 - E|AP| arrr
¢ 2~ h ¢

Once we have solved the Riemann problem for the waves afr?, limited waves @477, and speeds M\, we
can compute everything needed for the high-resolution method (17.91).

These methods are implemented in a very general form in the CLAWPACK (Conservation LAWs
PACKage) software which is available on the web [LeV].

17.8 Boundary conditions

So far we have only studied methods for updating the cell average @)} assuming that we have neighboring
cell values Q7 | and Q7 , and perhaps values further away as needed in order to compute the fluxes
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F/* and F}} . In practice we must always compute on some finite set of grid cells covering a bounded
domain, and in the first and last cells we will not have the required neighboring information. Instead
we have some set of physical boundary conditions that must be used in updating these cell values.
One approach is to develop special formulas for use near the boundaries, which will depend both on
what type of boundary condition is specified and on what sort of method we are trying to match.
However, in general it is much easier to think of extending the computational domain to include a few
additional cells on either end, called ghost cells, whose values are set at the beginning of each time
step in some manner that depends on the boundary conditions and perhaps the interior solution. Then
these values provide the neighboring cell values needed in updating the cells near the physical domain.
The updating formula is then exactly the same in all cells, and there is no need to develop a special
flux-limiter method, say, that works with boundary data instead of initial data. Instead the boundary
conditions must be used in deciding how to set the values of the ghost cells, but this can generally be
done in a way that depends only on the boundary conditions and is decoupled entirely from the choice
of numerical method that is then applied.

Suppose the problem is on the physical domain [a, b], which is subdivided into cells Cy, Ca, ..., Cy
with 1 = a and 41 = b, so that h = (b — a)/N. If we use a method for which F; depends only on
Q;—1 and Q;, then we need only one ghost cell on either end. The ghost cell Cyp = [a — h,a) allows us
to calculate the flux Fy at the left boundary while the ghost cell Cyy1 = [b,b+ h) is used to calculate
Fni1 at © = b. With a flux-limiter method of the type developed above, we will generally need two
ghost cells at each boundary since, for example, the jump Q¢ — Q-1 will be needed in limiting the flux
correction in Fj. For a method with an even wider stencil, additional ghost cells would be needed.

We will refer to the solution in the original domain [a, b] as the interior solution, which is computed
in each time step by the numerical method. At the start of each time step we have the interior values
Qr, ..., Q% obtained from the previous time step (or from the initial conditions if n = 0), and we
apply a boundary condition procedure to fill the ghost cells with values Qg, Q% ;, etc. before
applying the method on the next time step. We will look at several examples to see how the ghost cell
values might be set in order to implement various physical boundary condtions.

17.8.1 Periodic boundary conditions

Periodic boundary conditions of the form g(a,t) = q(b,t) are very easy to impose with any numerical
method. In updating @1 we need values Qg to the left and Q> to the right (for a 3-point method). By
periodicity the value Q¢ should agree with the value Qn in the last cell. One could code the formula
for updating @)1 separately to use @ n in place of the value Q;—; that would normally be used for ¢ > 1,
but it is simpler to use the ghost-cell approach and simply set Qy = Q% before computing fluxes and
updating the cell values, so that the same formula can then be used everywhere. With a 5-point stencil
we need to fill two ghost cells at each boundary, and we set

Qli=QN-1, Q=0Qr, Qv =0, Qr=0; (17.94)

at the start of each time step.

17.8.2 Outflow boundaries

Often we have artificial computational boundaries that arise simply because we can only solve the
problem on a bounded domain. At such boundaries we often want to have no incoming signal, while there
may be out-going waves that should leave the domain cleanly without generating spurious reflections at
the artificial boundary. We thus want nonreflecting boundary conditions. At such boundaries we can
often set ghost cell values by extrapolation from the interior solution. If the ghost cell value Q%
is set based on Q%, Q% _;, ..., then the new value Q%‘*l will effectively be computed on the basis of
values to the left alone, even if the formula depends on Q% ;, and hence this reduces to some sort of
upwind method. The simplest approach is to use a zero-order extrapolation, meaning extrapolation
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by a constant function. We simply set

Q1 =@, QR =0% (17.95)

at the start of each time step. The idea of extrapolation at outflow boundaries turns out to be extremely
powerful in conjunction with methods based on solving Riemann problems. If there is no jump in the
values at the boundary, there are no waves in the Riemann solution and in particular no incoming
waves.
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Chapter 18

Mixed Equations and Fractional
Step Methods

We have now studied the solution of various types of time-dependent equations — ODE’s such as those
arising in chemical kinetics, diffusion equations, and advection equations. In practice several processes
may be happening simultaneously, and the PDE model will not be a pure equation of any of the types
already discussed, but rather a mixture. In this chapter we discuss mixed equations such as reaction-
diffusion equations or advection-diffusion equations. There are various ways to handle mixed equations,
and we will consider two basic approaches:

e Unsplit methods, in which a single finite-difference formula is developed to advance the full mixed
equation over one time step.

e Fractional step (splitting) methods, in which the problem is broken down into pieces correspond-
ing to the different processes, and a numerical method appropriate for each separate piece is
applied independently. This approach is also often used to split multi-dimensional problems into
a sequence of one-dimensional problems (dimensional splitting. We have seen an example of this
for the heat equation in the LOD method of Section 13.8.

18.1 Advection-reaction equations

Example 18.1. We begin with a simple advection-reaction equation of the form
ug + aug, = —Au, (18.1)

with data u(z,0) = n(z). This would model, for example, the transport of a radioactive material in
a fluid flowing at constant speed a down a pipe. The material decays as it flows along, at rate A.
We can easily compute the exact solution of (18.1), since along the characteristic dz/dt = a we have
du/dt = —Au, and hence

u(z,t) = e Mn(x — at). (18.2)

18.1.1 Unsplit methods

It is easy to develop unsplit methods for (18.1). For example, an obvious extension of the upwind
method for advection would be (assuming a > 0),

n+1 n ak n n n
Uttt =U; —T(Uj —Ul'y) — kXUT. (18.3)

187
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This method is first order accurate and stable for 0 < ak/h < 1.
A second order Lax-Wendroff style method can be developed by using the Taylor series

1.
u(z, t + k) ~u(z, t) + kug(x, t) + §k2utt(ac,t). (18.4)

As in the derivation of Lax-Wendroff, we must compute uy from the PDE, obtaining

Ut = — AUzt — A’U/t.
Since
Uty = —AUgg — /\uw:
we obtain
Upt = QP Uyy + 200U, + N2u. (18.5)

Note that this is more easily obtained by using
0w = (—ady — N)u,
and hence
Ofu = (—ad, — A\)*u = (a*9% — 2a\0, + A\*)u. (18.6)

Using this expression for u;; in (18.4) gives

u(z,t + k) = u— k(au, + A\u) + = k (a® Uy + 20Uy + N u)

‘ 1 1. (18.7)
= (1 — kX + 5]@'2/\2) u— ka (1 — Ek/\> Uz + Ekzazum.

We can now approximate z-derivatives by finite differences to obtain the second-order method

n 1. . ka " k*a? n
U = (1—k/\+ 51&%) U - ﬁ< k/\>( F = Ui + 5o (U, — 207 + ,+1)(18 g

Note that in order to correctly model the equation (18.1) to second order accuracy, we must properly
model the interaction between the au, and the Au terms, which brings in the mixed term ——kQa/\ugE
in the Taylor series expansion.

For future use we also note that the full Taylor series expansion can be written as

(o)

u(z,t + k) = Z

j=0

—ad, — Nu(z,1), (18.9)

.I??

which can be written formally as
u(z,t + k) = e Ha%=+ Ny (g 1) (18.10)

The operator e~ *(4%+)) which is defined via the Taylor series in (18.9), is called the solution operator
for the PDE (18.1). Note that for any value of k& we have

w(z, k) = e~ @9 +Ny (2, 0).
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18.1.2 Fractional step methods
A fractional step method for (18.1) is applied by first splitting the equation into two subproblems

Problem A:  u; + auy =0, (18.11)
Problem B:  u; = —Au. (18.12)

We have developed methods for each of these two equations separately. The idea with the fractional
step method is to combine these by applying the two methods in an alternating manner. As a simple
example, suppose we use the upwind method for the A-step and forward Euler for the ODE in the
B-step. Then the simplest fractional step method over one time step would consist of the following 2
stages:

A-step: Uy =Up —4E@Ur —up ), (18.13)
B-step: Ut = Us — kXU;. (18.14)

Note that we first take a time step of length & with upwind, starting with initial data U]* to obtain the
intermediate value U;. Then we take a time step of length k using forward Euler, starting with the
data U* obtained from the first stage.

It may seem that we have advanced the solution by time 2k after taking these two steps of length
k. However, in each stage we used only some of the terms in the original PDE, and the two stages
combined give a consistent approximation to solving the original PDE (18.1) over a single time step of
length k.

To check this consistency, we can combine the two stages by eliminating U* to obtain a method in
a more familiar form:

Urtt = (1 - kNU;

n ak
= 1=k U} = (U} = U}Ly) (18.15)
ak ak?\
=Uj' - T(U]” —Uy) — kAU + 3 (U =Uj"y).
The first three terms on the right-hand side agree with the unsplit method (18.3). The final term is
O(k?) (since (UP —UP_,)/h = u, = O(1)) and so a local truncation error analysis will show that this

method, though slightly different from (18.3), is also consistent and first order accurate on the original
equation (18.1).

A natural question is whether we could improve the accuracy by using a more accurate method in
each step. For example, suppose we use Lax-Wendroff in the A-step and the trapezoidal method, or the
2-stage Runge-Kutta method from Example 6.15, in the B-step. Would we then obtain a second order
accurate method for the original equation? For this particular equation, the answer is yes. In fact if
we use p’th order accurate methods for each step, the result will be a p’th order accurate method for
the full original equation. But this equation is very special in this regard, and this claim should seem
surprising. One would think that splitting the equation into pieces in this manner would introduce some
error that depends on the size of the time step k and is indepenendent of how well we then approximate
the subproblem in each step. In general this is true — there is a “splitting error” that in general would
be O(k) for the type of splitting used above, and so the resulting fractional step method will be only
first order accurate, no matter how well we then approximate each step. This will be analyzed in more
detail below.

For the case of equation (18.1) there is no splitting error. This follows from the observation that we
can solve (18.1) over any time period k by first solving equation (18.11) over time k, and then using
the result as data to solve the equation (18.12) over time k. To verify this, let u*(z, k) be the exact
solution to the A-problem,

(18.16)
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We use a different symbol u*(z, t) for the solution to this problem rather than u(z,t), which we reserve
for the exact solution to the original problem.
Then we have
u*(z, k) = n(x — ak).

If we now use this as data in solving the B-problem (18.12), we will be solving
upt = —Au** (18.17)

with initial data
u™(z,0) = n(z — ak).

This is just an ODE at each point x, and the solution is
u**(z, k) = e My(z — ak).

Comparing this with (18.2), we see that we have indeed recovered the solution to the original problem
by this 2-stage procedure.

Physically we can interpret this as follows. Think of the original equation as modeling a radioactive
tracer that is advecting with constant speed a (carried along in a fluid, say) and also decaying with
rate A. Since the decay properties are independent of the position z, we can think of first advecting the
tracer over time k without allowing any decay, and then holding the fluid and tracer stationary while
we allow it to decay for time k. We will get the same result, and this is what we have done in the
fractional step method.

Another way to examine the splitting error, which must be used more generally when we do not
know the exact solution to the equations involved, is to use Taylor series expansions. If we look at a
time step of length k, then solving the A-equation gives

1
u*(z, k) = u"(x,0) + kuj (x,0) + §k2u;‘t(aﬂ,,0) +---

1 (18.18)
= u*(z,0) — akul(x,0) + §a2k2u;w(aﬂ,,0) —
Similarly, if we solve the problem (18.17) with general initial data we obtain
1.
u*(z, k) = u**(z,0) + ku;*(z,0) + Ekzu;*t*(a:,O) +---
1 (18.19)
= (1 — kX + §k2A2 + - ) uw**(xz,0).
If we now use the result from (18.18) as the initial data in (18.19), we obtain
1. 1, .
u*(z, k) = <1 — kX + Ekz/\2 - > (u*(az,O) —aku}(z,0) + §a2k2u;$(a:,0) + - >
1. .
=u* — (aku) + ™) + Ekz(azu;z + 2a\ul + NPu*) 4 - (18.20)

Comparing this with the Taylor series expansion (18.7) that we used in deriving the unsplit Lax-
Wendroff method shows that this agrees with u(x, k), at least for the 3 terms shown, and in fact to all
orders.

Note that the mixed term k2alu, needed in the us term from (18.5) now arises naturally from
taking the product of the two Taylor series (18.18) and (18.19). In fact, we see that for this simple
equation we can write (18.19) as

u**(x, k) = e M (2,0)

while (18.18) can be written formally as

u*(z, k) = e % p(z).
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If we now use u*(z, k) as the data u**(z,0) as we do in the fractional step method, we obtain
U**(CC, k) — e—k/\e—akamn(x).

Multiplying out the Taylor series as we did in (18.20) verifies that these exponentials satisfy the usual
rule, that to take the product we need only add the exponents, i.e.,

u**(a:,k) — efk(a8w+)\)n(w).

The exponential appearing here is exactly the solution operator for the original equation, and so again
we see that u**(x, k) = u(x, k).

The fact that there is no splitting error for the problem (18.1) is a reflection of the fact that, for
this problem, the solution operator for the full problem is exactly equal to the product of the solution
operators of the two subproblems (18.11) and (18.12). This is not generally the case in other problems.

Example 18.2. Suppose we modify the equation slightly so that the decay rate A depends on x,

ue + au, = —A(z)u. (18.21)

Then our previous argument for the lack of a splitting error breaks down — advecting the tracer a
distance ak and then allowing it to decay, with rates given by the values of A at the final positions,
will not in general give the same result as if the decays occurs continuously as it advects, using the
instantaneous rate given by A(z) at each point passed.

This can be analyzed formally using Taylor series expansions again. Rather than going through
this for this particular example, we will first examine the more general case and then apply it to this
problem.

18.2 General formulation of fractional step methods
Consider a more general PDE of the form
us = (A+ B)u (18.22)

where A and B may be differential operators, e.g., A = —ad, and B = A(z) in the previous example.
For simplicity suppose that A and B do not depend explicitly on ¢, e.g., A(z) is a function of z but not
of t. Then we can compute that

Uit = (A + B)U,t = (A + B)2U,,

and in general

u = (A+ B)u.

We have used this idea before in calculating Taylor series, e.g., in (18.6).
Note that if A or B do depend on ¢, then we would have to use the product rule,

Ut = (A + B)Ut + (At + Bt)u

and everything would become more complicated.
In our simple case we can write the solution at time ¢ using Taylor series as

u(z, k) = u(z,0) + k(A + B)u(z,0) + %k2(¢4 + B)?*u(x,0) + - -

_ <I+k(A+B) + %k2(A+B)2 +) u(,0) (18.23)

I
|z

> j (A + B)u(z,0),
=0
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which formally could be written as
u(z, k) = " ATBly(z,0).
With the fractional step method, we instead compute
u*(z, k) = efu(z, 0),

and then
u (x, k) = e*PekAu(x, 0),

and so the splitting error is
u(z, k) —u**(z, k) = (ek(A+B) - ekBekA) u(z,0). (18.24)

This should be calculated using the Taylor series expansions. We have (18.23) already, while

u(z, k) = <I + kB + %k262 + - ) <I + kA + %k2A2 + - > u(z,0)

. (18.25)
= <I + k(A + B) + §k2(A2 +2BA+ B?) + - ) u(z,0).
The I + k(A + B) terms agree with (18.23). In the k? term, however, the term from (18.23) is
A+B)*=(A+B)(A+B
A+B) = (A+BALE) 526
=A"+ AB+ BA+ B-.
In general this is not the same as
A% + 2BA + B2,
and so the splitting error is
u(z, k) —u**(z, k) = %k2(¢48 — BA)u(z,0) + O(K?). (18.27)

The splitting error is zero only in the special case when the differential operators A and B commute (in
which case it turns out that all the higher order terms in the splitting error also vanish).
Example 18.3. For the problem considered in Example 18.1

A=—-a0, and B=-A\.

We then have ABu = BAu = a\u,. These operators commute for A constant and there is no splitting
€rror.
Example 18.4. Now suppose A = A(z) depends on z as in Example 18.2. Then we have

ABu = a0, (A(z)u) = a\(x)uy + aX (z)u

while
BAu = A(z)au,.

These are not the same unless A'(z) = 0. In general the splitting error will be
1
u(z, k) — v (z, k) = Ekza/\'(x)u(a:,O) + O(k*).

If we now design a fractional step method based on this splitting, we will see that the splitting
error alone will introduce an O(k?) error in each time step, which can be expected to accumulate to an
O(k) error after the T'/k time steps needed to reach some fixed time 7' (in the best case, assuming the
method is stable). Hence even if we solve each subproblem ezactly within the fractional step method,
the resulting method will be only first order accurate. If the subproblems are actually solved with
numerical methods that are p’th order accurate, the solution will still only be first order accurate no
matter how large p is.
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18.3 Strang splitting

It turns out that a slight modification of the splitting idea will yield second order accuracy quite
generally (assuming each subproblem is solved with a method of at least this accuracy). The idea is to
solve the first subproblem u; = Au over only a half time step of length k/2. Then we use the result as
data for a full time step on the second subproblem u; = Bu, and finally take another half time step on
u; = Au. We can equally well reverse the roles of A and B here. This approach is often called Strang
splitting as it was popularized in a paper by Strang[Str68] on solving multi-dimensional problems.

To analyze the Strang splitting, note that we are now approximating the solution operator e*(A+5)

by ezkAekBezkA  Taylor series expansion of this product shows that

eThABThA — <I-|— %kA+ %szﬁ + ) <I-|— kB + %k282 + ) <I-|— %kA+ %szﬁ + - )
_ T+ k(A+B) + %kz(/ﬁ +AB + BA+ B%) + O(k?), (18.28)

Comparing with (18.23), we seee that the O(k?) term is now captured correctly. The O(k?) term is not
correct in general, however, unless AB = B.A.

Exercise 18.1 Compute the O(k?) term in the splitting error for the Strang splitting.

Note that over several time steps we can simplify the expression obtained with the Strang splitting.
After n steps we have

Un — (e%/mekse%/m) (e%/mekseém) (e%kAeche%kA) o (18.29)

repeated n times. Dropping the parentheses and noting that ezkAgzhA — e*A, we obtain

i 1
U" = €2k'A€kB€k'A€kB€k'A"'€kB€2kAU0. (1830)

This differs from the first order splitting only in the fact that we start and end with a half time step
on A, rather than starting with a full step and ending with B.

Another way to achieve this same effect is to simply take steps of length k£ on each problem, as in
the first-order splitting, but to alternate the order of these steps in alternate time steps, e.g.,

Ul = ekBokAr0

U2 = kAkByL

U3 = ekBekAps2

Ut =  kAkBys3
etc.

If we take an even number of time steps, then we obtain

U™ = (MAekB) (FBekA) (ehAhB) (hBekA) ... (ehAchB) (¢hBekA) (0

Un = kA (ekBekB) (ek.Aek.A) (ekBekB) (ekBekB) kALT0.

Since ekBekB = ¢2kB this is essentially the same as (18.29) but with %k replaced by k.

The fact that the Strang splitting is so similar to the first order splitting suggests that the first
order splitting is not really so bad, and in fact it is not. While formally only first order accurate, the
coefficient of the O(k) term may be much smaller than coefficients in the second order terms arising
from discretization of e** and e*B.
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Appendix Al

Measuring Errors

In order to discuss the accuracy of a numerical solution, or the relative virtues of one numerical method,
vs. another, it is necessary to choose a manner of measuring that error. It may seem obvious what is
meant by the error, but as we will see there are often many different ways to measure the error which
can sometimes give quite different impressions as to the accuaracy of an approximate solution.

A1l.1 Errors in a scalar value

First consider a problem in which the answer is a single value z € R. Consider, for example, the scalar
ODE
w'(t) = f(u(t), w(©0)=n

and suppose we are trying to compute the solution at some particular time T, so z = u(T"). Denote the
computed soluiton by 2. Then the error in this computed solution is

E=%2—=z.

Al1.1.1 Absolute error

A natural measure of this error would be the absolute value of E,
|E| = |2 - 2].

This is called the absolute error in the approximation.
As an example, suppose that z = 2.2 while some numerical method produced a solution z = 2.20345.
Then the absolute error is
|2 — z| = 0.00345 = 3.45 x 1073.

This seems quite reasonable — we have a fairly accurate solution with three correct digits and the
absolute error is fairly small, on the order of 1072, We might be very pleased with an alternative
method that produced an error of 10~% and horrified with a method that produced an error of 108,
But note that our notion of what is a large error or a small error might be thrown off completely
if we were to choose a different set of units for measuring z. For example, suppose the z discussed
above were measured in meters, so z = 2.2 meters is the correct solution. But suppose that instead
we expressed the solution (and the approximate solution) in nanometers rather than meters. Then the
true solution is z = 2.2 x 10° and the approximate solution is 2 = 2.20345 x 10°, giving an absolute

error of
|2 — 2| = 3.45 x 10°.

We have an error that seems huge and yet the solution is just as accurate as before, with three correct
digits.

A-1
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Conversely, if we measured z in kilometers then z = 2.2 x 1072 and 2 = 2.20345 x 1073 so
|2 — 2| =3.45x 10°°.

The error seems much smaller and yet there are still only three correct digits.

Al1.1.2 Relative error

The above difficulties arise from a poor choice of scaling of the problem. One way to avoid this is to

consider the relative error, defined by
Z2—z

4

The size of the error is scaled by the size of the value being computed. For the above examples, the
relative error in 2 is equal to

=157x 103

2.20345— 22|  [2.20345 x 10° — 2.2 x 10°
2.2 o 2.2 x 109

The value of the relative error is the same no matter what units we use to measure z, a very desirable
feature. Also note that in general a relative error that is on the order of 10~* indicates that there are
roughly k correct digits in the solution, matching our intuition.

For these reasons the relative error is often a better measure of accuracy than the absolute error.
Of course if we know that our problem is “properly” scaled, so that the solution z has magnitude order
1, then it is fine to use the absolute error, which is roughly the same as the relative error in this case.

In fact it is generally better to insure that the problem is properly scaled than to rely on the relative
error. Poorly scaled problems can lead to other numerical difficulties, particularly if several different
scales arise in the same problem so that some numbers are orders of magnitude larger than others for
nonphysical reasons. Unless otherwise noted below, we will assume that the problem is scaled in such
a way that the absolute error is meaningful.

Al.2 “Big-oh” and “little-oh” notation

In discussing the rate of convergence of a numerical method we use the notation O(hP), the so-called
“big-oh” notation. In case this is unfamiliar, here is a brief review of the proper use of this notation.
If f(h) and g(h) are two functions of h then we say that

J(h) = O(g(h)) as b= 0

if there is some constant C' such that

‘f(h) ‘ < C for all h sufficiently small,
g(h)

or equivalently, if we can bound
|f(h)] < C|g(h)| for all h sufficiently small.

Intuitively, this means that f(h) decays to zero at least as fast as the function g(h) does. Usually g(h)
is some monomial h?, but this isn’t necessary.
It is also sometimes convenient to use the “little-oh” notation

f(h) =o0(g(h)) as h — 0.

This means that

‘%‘amﬁ h — 0.
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This is slightly stronger than the previous statement, and means that f(h) decays to zero faster than
g(h). If f(h) = o(g(h)) then f(h) = O(g(h)) though the converse may not be true. Saying that
f(h) = o(1) simply means that the f(h) — 0 as h — 0.

Examples:

3

2
2h* = O(h®) as h — 0, since L 2h < 1for all h < 1/2.

h2
2h% = o(h*®) as h — 0, since 2h — 0 as h — 0.

h3 5
sin(h) = O(h) as h — 0, since sinh=h—§+€+---<hforall h > 0.

sin(h) = h+o(h) as h — 0, since (sinh — h)/h = O(h?).
Vh=0(1) as h — 0, and also Vh = o(1), but v/ is not O(h) .
1 —cosh=o(h) and 1—cosh= O(h?) as h — 0.

e /" = o(h?) as h — 0 for every value of g.
e—1/h

To see this, let 2 = 1/h then =e 2?7 - 0as ¢ = 0.

Note that saying f(h) = O(g(h)) is a statement about how f behaves in the limit as h — 0. This
notation is sometimes abused by saying, for example, that if A = 1073 then the number 3 x 10~% is O(h?).
Though it is clear what is meant, this is really meaningless mathematically and may be misleading when
analyzing the accuracy of a numerical method. If the error E(h) on a grid with A = 10~ turns out to
be 3 x 1078, we cannot conclude that the method is second order accurate. It could be, for example,
that the error E(h) has the behavior

E(h) = 0.003h (AL1)

in which case E(1073) = 3 x 107° but it is not true that E(h) = O(h?). In fact the method is only first
order accurate, which would become apparent as we refined the grid.
Conversely, if

E(h) = 10° h? (A1.2)
then E(1072) = 1 which is much larger than h?, and yet it is still true that
E(h) = O(h*) as h — 0.

Also note that there is more to the choice of a method than its asymptotic rate of convergence. While
in general a second order method outperforms a first order method, if we are planning to compute on
a grid with h = 1073 then we would prefer a first order method with error (A1.1) over a second order
method with error (A1.2).

A1.3 Errors in vectors

Now suppose z € IR™ is a vector with m components, for example the solution to a system of m ODE’s
at some particular fixed time T'. Then % is a vector of approximate values and the error e = 2 — 2 is
also a vector in IR"™. In this case we can use some vector norm to measure the error.

There are many ways to define a vector norm. In general a vector norm is simply a mapping from
vectors z in IR™ to nonnegative real numbers, satisfying the following conditions (which generalize
important properties of the absolute value for scalars):
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1. ||lz|| > 0 for any € R™, and |z|| = 0 if and only if z = 0.
2. If a is any scalar then |az| = |al||z].
3. If », y € R™, then ||z + y|| < [lz]| + [ly||. (Triangle inequality)

One common choice is the max-norm (or infinity-norm) denoted by || - ||oc:

llello = max |e;].
1<i<m
It is easy to verify that || - ||oo satisfies the required properties. A bound on the max-norm of the error
is nice because we know that every component of the error can be no greater than the max-norm. For
some problems, however, there are other norms which are either more appropriate or easier to bound
using our analytical tools.
Two other norms that are frequently used are the 1-norm and 2-norm,

lells =" lesl  and  leflz = (AL3)
i=1

These are special cases of the general family of p-norms, defined by

m 1/1’
lell, = lz |ez~|p] . (AL4)

Note that the max-norm can be obtained as the limit as p — oo of the p-norm.

A1.3.1 Norm equivalence

With so many different norms to choose from, it is natural to ask whether results on convergence of
numerical methods will depend on our choice of norm. Suppose e” is the error obtained with some step
size h, and that ||e"|| = O(h?) in some norm, so that the method is gth order accurate. Is it possible
that the rate will be different in some other norm? The answer is “no”, due to the following result on
the “equivalence” of all norms on R™. (Note that this result is only valid as long as the dimension m
of the vector is fixed as h — 0. See Section A1.5 for an important case where the length of the vector
depends on h.)

Let || - [|o and || - || represent two different vector norms on IR"™. Then there exist two constants C
and C5 such that

Cillzlla < llzlls < Callz]la (A1.5)

for all vectors # € IR™. For example, it is fairly easy to verify that the following relations hold among
the norms mentioned above:

[#lloo < lzlly < mllz]leo (Al.6a)

[2lloe < Nzl < Vmllo]ls (A1.6b)

lellz < llzlly < vmlzl. (Al.6¢)
Now suppose that ||e|l, < Ch? as h — 0 in some norm || - ||o. Then we have

lle"lls < Calle"la < C2Ch?

and so ||e®||s = O(h?) as well. In particular, if ||e”|| — 0 in some norm then the same is true in any
other norm and so the notion of “convergence” is independent of our choice of norm. This will not be
true in Section Al.4, where we consider approximating functions rather than vectors.
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Al1.3.2 Matrix norms

For any vector norm || -|| we can define a corresponding matrix norm. The norm of a matrix A € R™*™
is denoted by ||A|| and has the property that C = ||A]| is the smallest value of the constant C for which
the bound

[Az|| < O]l (ALT)

holds for every vector € IR™. Hence ||A|| is defined by

A

T L
z€R™ ||$|| z€eR™
o0 llzl|=1

It would be rather difficult to calculate ||A|| from the above definitions, but for the most commonly
used norms there are simple formulas for computing ||A|| directly from the matrix:

m

A, = ax Zl la;j| (maximum column sum) (Al1.8a)
i=

lAlloe = 1211%}%121 la;;| (maximum row sum) (A1.8b)
]:

Al = +/p(ATA). (A1.8¢)

In the definition of the 2-norm, p(B) denotes the spectral radius of the matrix B (the maximum modulus
of an eigenvalue). In particular, if A = AT is symmetric, then ||A|s = p(A).
Al1.4 Errors in functions

Now consider a problem in which the solution is a function u(z) over some interval a < z < b rather
than a single value or vector. Some numerical methods, such as finite element or collocation methods,
produce an approximate solution @(x) which is also a function. Then the error is given by a function

e(z) = u(z) — u(x).

We can measure the magnitude of this error using standard function space norms, which are quite
analogous to the vector norms described above. For example, the max-norm is given by

lelloo = max fe(o)] (AL9)

The 1-norm and 2-norms are given by integrals over [a, b] rather than by sums over the vector elements:

lefly

b
/ le(z)| dx, (A1.10)

X 1/2
lells = (/ |e(:v)|2dac> . (A1.11)

These are again special cases of the general p-norm, defined by

b 1/P
||e||p=( / |e<x>|pdw> . (AL12)
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A1.5 Errors in grid functions

Finite difference methods do not produce a function @(x) as an approximation to u(z). Instead they
produce a set of values U; at grid points x;. For example, on a uniform grid with NV 4 1 equally spaced
points with spacing h = (b —a)/N,

z; = a+ih, 1=0,1, ..., N,

our approximation to u(z) would consist of the N + 1 values (Ug, U;, ..., Uy). How can we measure
the error in this approximation? We want to compare a set of discrete values with a function.

We must first decide what the values U; are supposed to be approximating. Often the value U; is
meant to be interpreted as an approximation to the pointwise value of the function at x;, so U; = u(x;).
In this case it is natural to define a vector of errors e = (eg, €1, ..., ex) by

€; = Uz — U(l‘z)

This is not always the proper interpretation of U;, however. For example, some numerical methods are
derived using the assumption that U; approximates the average value of u(x) over an interval of length
h, e.g.,

1 [
T h

In this case it would be more appropriate to compare U; to this cell average in defining the error.
Clearly the errors will be different depending on what definition we adopt, and may even exhibit
different convergence rates (see Example 3.1 below), so it is important to make the proper choice for
the method being studied.

Ounce we have defined the vector of errors (eg, ..., en), we can measure its magnitude using some
norm. Since this is simply a vector with IV + 1 components, it would be tempting to simply use one of
the vector norms discussed above, e.g.,

U; u(z) dz, 1i=1,2, ..., N.

Ti—1

N
lells = lei- (A1.13)
=0

However, this choice would give a very misleading idea of the magnitude of the error. The quantity in
(A1.13) can be expected to be roughly N times as large as the error at any single grid point and here
N is not the dimension of some physically relevant space, but rather the number of points on our grid.
If we refine the grid and increase N, then the quantity (A1.13) might well increase even if the error at
each grid point decreases, which is clearly not the correct behavior.

Instead we should define the norm of the error by discretizing the integral in (A1.10), which is
motivated by considering the vector (eg, ..., en) as a discretization of some error function e(z). This
suggests defining

N
lefli =R lei] (A1.14)
=0

with the factor of h corresponding to the dz in the integral. Note that since h = (b — a)/N, this scales
the sum by 1/N as the number of grid points increases, so that |le]|; is the average value of e over
the interval (times the length of the interval), just as in (A1.10). The norm (A1.14) will be called a
grid-function norm and is distinct from the related vector norm. The set of values (eg, ..., en) will
sometimes be called a grid function to remind us that it is a special kind of vector that represents the
discretization of a function.

Similarly, the p-norm should be scaled by A'/?, so that the p-norm for grid functions is

N 1/p
lell, = (hz Ieil”> : (A1.15)
i=0
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Since h'/? — 1 as p — 0o, the max-norm remains unchanged:

lellc = max |el,
0<i<N

which makes sense from (A1.9).
In two space dimensions we have analogous norms of functions and grid functions, e.g.,

1/p
llell, = (// le(z,y)|P dacdy) for functions

1/p

Az Ay Z Z les;|? for grid functions
(]

llell,

with the obvious extension to more dimensions.

A1.5.1 Norm equivalence

Note that we still have an equivalence of norms in the sense that, for any firzed N (and hence fixed h),
there are constants Cy7 and C5 such that

Cillzlla < lzlls < Call2lla

for any vector e € RV*!. For example, translating (A1.6a) to the context of grid-function norms gives
the bounds

hllelloc < lells < Nhlellooc = (b = a) [[€]oo; (A1.16a)
Vilelloo < llellz < VNR|elloc = Vo —aelloo, (A1.16b)

Vilel2 < llells < VNRllellz = Vb —allell2- (A1.16¢)

However, since these constants may depend on N and h, this equivalence does not carry over when we
consider the behavior of the error as we refine the grid so that h — 0 and N — oo.
We are particularly interested in the convergence rate of a method, and would like to show that

le"]l < O(h?)

for some ¢. In the last section we saw that the rate is independent of the choice of norm if " is a vector
in the space IR™ with fixed dimension m. But now m = N + 1 and grows as h — 0, and as a result
the rate may be quite different in different norms. This is particularly noticeable if we approximate a
discontinuous function, as the following example shows.

Example 3.1. Set

<
O
[l
——
o
S
IN
= N

Let N be even and let

0 i<N/2
U= & i=NJ/2
1 i>N/2

be the discrete approximation on the grid with spacing h = 1/N on the interval 0 < z < 1. This is
illustrated in Figure A1.1 for N = 8. Define the error ef by

L i=N/2
e = Ul —u(ay) = 2 .
0 otherwise.
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Figure A1.1: The function u(z) and the discrete approximation.

No matter how fine the grid is, there is always an error of magnitude 1/2 at i = N/2 and hence

1
lle®|loe = 3 for all h.

On the other hand, in the 1-norm (A1.14) we have
lle" |l = /2 = O(h) as h — 0.

We see that the 1-norm converges to zero as h goes to zero while the max-norm does not.

How should we interpret this? Should we say that U” is a first order accurate approximation to
u(z) or should we say that it does not converge? It depends on what we are looking for. If it is
really important that the maximum error over all grid points be uniformly small, then the max-norm
is the appropriate norm to use and the fact that ||e”| . does not approach zero tells us that we are not
achieving our goal. On the other hand this may not really be required, and in fact this example illustrates
that it is unrealistic to expect pointwise convergence in problems where the function is discontinuous.
For many purposes the approximation shown in Figure A1.1 would be perfectly acceptable.

This example also illustrates the effect of choosing a different definition of the “error”. If we were
to define the error by

1 zi+h/2
eh =Ul - — u(z) dz,
h zi—h/2
then we would have e = 0 for all i and h and |le”|| = 0 in every norm, including the max-norm.

With this definition of the error our approximation is not only acceptable, it is the best possible
approximation.
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Appendix A2

Estimating errors in numerical
solutions

When developing a computer program to solve a differential eqution, it is generally a good idea to test
the code and ensure that it is producing correct results with the expected accuracy. How can we do
this?

A first step is often to try the code on a problem for which the exact solution is known, in which case
we can compute the error in the numerical solution exactly. Not only can we then check that the error
is small on some grid, we can also refine the grid and check how the error is behaving asymptotically,
to verify that the expected order of accuracy and perhaps even error constant are seen. Of course one
must be aware of some of the issues raised in Appendix Al, e.g., that the expected order may only
appear for h sufficiently small.

It is important to test a computer program by doing grid refinement studies even if the results
look quite good on one particular grid. A subtle error in programming (or in deriving the difference
equations or numerical boundary conditions) can lead to a program that gives reasonable results and
may even converge to the correct solution, but at less than the optimal rate. Consider, for example,
the First Attempt of Section 2.11.

Of course in practice we are usually trying to solve a problem for which we do not know the exact
solution, or we wouldn’t bother with a numerical method in the first place. However, there are often
simplified versions of the problem for which exact solutions are known, and a good place to start is with
these special cases. They may reveal errors in the code that will affect the solution of the real problem
as well.

This is generally not sufficient however, even when it is possible, since in going from the easy special
case to the real problem there may be new errors introduced. How do we estimate the error in a
numerical solution if we do not have the exact solution to compare it with?

The standard approach, when we can afford to, is to compute a numerical solution on a very fine grid
and use this as a “reference solution” (or “fine-grid” solution). This can be used as a good approximation
to the exact solution in estimating the error on other, much coarser, grids. When the fine grid is fine
enough, we can obtain good estimates not only for the errors, but also for the order of accuracy. See
Section A2.2.

Often we cannot afford to take very fine grids, especially in more than one space dimension. We
may then be tempted to use a grid that is only slightly finer than the grid we are testing in order to
generate a reference solution. When done properly this approach can also yield accurate estimates of
the order of accuracy, but more care is required. See Section A2.3 below.
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A2.1 Estimates from the true solution

First suppose we know the true solution. Let E(h) denote the error in the calculation with grid spacing
h, as computed using the true solution. In this chapter we suppose that E(h) is a scalar, typically some
norm of the error over the grid, i.e.,

E(h) = llg" - ¢"|

where ¢" is the numerical solution vector (grid function) and ¢" is the true solution evaluated on the
same grid.
If the method is p’th order accurate then we expect

E(h) = Ch? +o(h*) as h— 0,
and if A is sufficiently small then
E(h) ~ Ch?. (A2.1)
If we refine the grid by a factor of 2, say, then we expect
E(h/2) = C(h/2)P.

Defining the error ratio

R(h) = E(h) | E(h)2), (A2.2)

we expect
R(h) ~ 2°, (A2.3)

and hence
p ~ logy (R(h)). (A2.4)

Here refinement by a factor of 2 is used only as an example, since this choice is often made in practice.
But more generally if A1 and ho are any two grid spacings, then we can estimate p based on calculations
on these two grids using

~ log(E(h1)/E(h2))
log(h1/hs)
Hence we can estimate the order p based on any two calculations. (This will only be valid if A is small

enough that (A2.1) holds, of course.)
Note that we can also estimate the error constant C' by

(A2.5)

C ~ E(h)/h?

once p is known.

A2.2 Estimates from a fine-grid solution

Now suppose we don’t know the exact solution but that we can afford to run the problem on a very
fine grid, say with grid spacing h, and use this as a reference solution in computing the errors on some
sequence of much coarser grids. In order to compare ¢" on the coarser grid with ¢” on the fine grid, we
need to make sure that these two grids contain coincident grid points where we can directly compare
the solutions. Typically we choose the grids in such a way that all grid points on the coarser grid are
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also fine grid points. (This is often the hardest part of doing such grid refinement studies — getting
the grids and indexing correct.)

Let @" be the restriction of the fine-grid solution to the h-grid, so that we can define the approximate
error E(h) = ||¢" — @"||, analogous to the true error E(h) = ||¢" — ¢"||. What is the error in this
approximate error? We have

" -7 = ("-d")+@" -7
If the method is supposed to be p’th order accurate and h? < h?, then the second term on the right
hand side (the true error on the h-grid) should be negligible compared to the first term (the true error
on the h-grid) and E(h) should give a very accurate estimate of the error.

WARNING: Estimating the error and testing the order of accuracy by this approach only confirms
that the code is converging to some function with the desired rate. It is perfectly possible that the code
is converging very nicely to the wrong function. Consider a second-order accurate method applied to a
two-point boundary value problem, for example, and suppose that we code everything properly except
that we mistype the value of one of the boundary values. Then a grid-refinement study of this type
would show that the method is converging with second order accuracy, as indeed it is. The fact that it
is converging to the solution of the wrong problem would not be revealed by this test. One must use
other tests as well, not least of which is checking that the computed solutions make sense physically,
e.g., that the correct boundary conditions are in fact satisfied.

More generally, a good understanding of the problem being solved, a knowledge of how the solution
should behave, good physical intuition and common sense are all necessary components in successful
scientific computing. Don’t believe the numbers coming out simply because they are generated by a
computer, even if the computer also tells you that they are second order accurate!

A2.3 Estimates from coarser solutions

Now suppose that our computation is very expensive even on relatively coarse grids, and we cannot
afford to run a calculation on a much finer grid in order to test the order of accuracy. Suppose, for
example, that we are only willing to run the calculation on grids with spacing h, h/2 and h/4, and wish
to estimate the order of accuracy from these three calculations, without using any finer grids. Since we
can estimate the order from any two values of the error, we could define the errors in the two coarser
grid calculations by using the h/4 calculation as our reference solution. Will we get a good estimate for
the order?

In the notation used above, we now have h = h/4 while h = 4h and h/2 = 2h. Assuming the method
is p’th order accurate and that h is small enough that (A2.1) is valid (a poor assumption, perhaps, if
we are using very coarse grids!), we expect

E(h) = E(h) - E(h)
~ ChP — CR?
(42 — 1)ChP.

Similarly,
E(h/2) = (2 —1)ChP.

The ratio of approximate errors is thus

p_

R(h) = E(h)/E(h)2) ~ ;‘p - i =2 41

This differs significantly from (A2.3). For a first-order accurate method with p = 1, we now have
R(h) = 3 and we should expect the apparent error to decrease by a factor of 3 when we go from A to
h/2, not by the factor of 2 that we normally expect. For a second-order method we expect a factor
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of 5 improvement rather than a factor of 4. This increase in R(h) results from the fact that we are
comparing our numerical solutions to another approximate solution that has a similar error.

We can obtain a good estimate of p from such calculations (assuming (A2.1) is valid), but to do so
we must calculate p by

p =~ logy(R(h) —1)
rather than by (A2.4). The approximation (A2.4) would overestimate the order of accuracy.

Again we have used refinement by factors of 2 only as an example. If the calculation is very expensive
we might want to refine the grid more slowly, using for example h, 3h/4 and h/2. One can develop
appropriate approximations to p based on any three grids. The tricky part may be to estimate the error
at grid points on the coarser grids if these are not also grid points on the A grid. Interpolation can be
used, but then one must be careful to insure that sufficiently accurate interpolation formulas are used
that the error in interpolation does not contaminate the estimate of the error in the numerical method
being studied.

A2.4 Extrapolation methods

We have seen that we can estimate the dominant term of the error C'h? by using the results of numerical
calculations alone, without knowing the exact solution. This immediately suggests that we should be
able to improve our computed solution on any of the grids used by subtracting a good estimate of
the error. This is the basis of extrapolation methods, often called Richardson extrapolation, which is a
very important technique for improving the accuracy with modest additional work. See [Kel76] or any
introductory numerical analysis text for more information.
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Appendix A3

Convergence of iterative methods

Consider the nonlinear equation
g(z) =0 (A3.1)
and suppose we want to solve for a root * numerically. Many iterative methods take the form
o = Gty (A3.2)

where G is some iteration function. The iteration (A3.2) is often called a fized point iteration (FPI)
since the root z* should be a fixed point of G:

* = G(x"). (A3.3)

Sometimes the original function g(x) has a form that makes one choice of G clear (although the obvious
choice may not be the best). For example, if we are using the Backward Euler method to solve the TVP

y' = f(y), then
Ynt+1 = Yn + hf(Ynt1) (A3.4)
and we must solve for y,41. The function g is given by
9(x) =z —yn — hf(z)
and an obvious candidate for G is
G(z) = yn + hf(z). (A3.5)
In Newton’s method, G is chosen to enhance convergence,
G(z) =z —g(x)/g'(z). (A3.6)
Note that G(z*) = z* provided that ¢'(z*) # 0. For example, Newton applied to Backward Euler gives
G(z) =z — (z —yn — hf(2))/(1 = hf'(2)).
The secant method is more complicated since it defines z[**+1 based on two previous values,

P — () gy

Convergence of FPL. It is easy to determine when the FPI (A3.2) converges and how fast. Sub-
tracting (A3.3) from (A3.2) gives

P = Q2lF) — G(2¥)
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and so

2 | = |G - G|

K2t = 7] (A3.7)

IA I

provided that G is Lipschitz continuous near the root z*. If G is continuously differentiable then
K ~ |G'(z)]

provided z!*! is close to z*.
Let el*] = zl¥] — 2* be the error in iteration k. Then (A3.7) gives

et | < Kel®| (A3.8)

and so
|e[k}| < Kk|e[°1|.

The iteration converges provided K < 1. This requires in particular that |G'(z*)| < 1 and that we start
close enough to z*.

Ezample. For the backward Euler method (A3.4), G is given by (A3.5) and y,, is fixed, so
G'(z) = hf'(z).

It f is smooth then |G'| < 1 provided h is small enough. (For stiff problems, however, this puts
a restriction on h that is similar to what would be required by explicit Euler, so this is not really
attractive and something like Newton’s method must be used.)

Convergence rate. The relation (A3.8) shows that the FPI is in general linearly convergent if
0 < K < 1, ie., |eft1]] is approximately equal to a constant times |e#!| to the first power. The
constant is roughly |G'(z*)| as we approach z*.

Convergence of Newton’s method. Now consider Newton’s method where G is given by (A3.6).
In this case

(9 (=
and so G'(z*) = 0 (provided ¢'(z*) # 0). So in (A3.7) we can obtain a better bound on the error by
expanding
1
Ga) = ") + G (@)@ —2) + 56" (@)@l — 27 4
We find that

* ]‘ *
|G (M) - G(a™)| = 216" (@) M)
which shows that Newton is quadratically convergent:

lelFt1) & K [el#)2,

(This is still assuming g'(z*) # 0. Ezercise: what if g'(z*) = 0 but ¢ (z*) # 07)

Determining the rate of convergence from numerical results. Suppose we apply some
iterative method to g(z) = 0 and get a table of errors el¥l = z[*l — 2*. How can we determine the rate
of convergence? (For the moment assume we are testing our program on a problem where we know z*
so we can compute el#. This is generally a good place to start.)

If we expect
el | x K |elklp

for some p, then taking logarithms gives

[k+1

log |el 1| x log K + plog |el*| (A3.9)
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so we expect the relation between log |el*]| and log|el*+1]| to be linear. Similarly we expect

log |el*+2] ~ log K + plog |elF+1]] (A3.10)
Note that (A3.9) and (A3.10) form a system of two linear equations for the unknowns log K and p. So
based on three iterates el elk+1] and el*+2] we can estimate these values. Of course the values we get
will depend on which iterates we look at, but we would expect that as we converge to x* these values

will converge to the correct values.

Example. Applying fixed point iteration to the equation = = cos(z) starting from zl% = 1 gives
the following results:

nu X err K P

0 0.1000000000000000D+01 0.2609D+00

1 0.5403023058681397D+00 0.1988D+00

2 0.8575532158463933D+00 0.1185D+00 0.2563D+01 1.9030
3 0.6542897904977793D+00 0.8480D-01 0.3365D+00 0.6461
4 0.7934803587425656D+00 0.5440D-01 0.1440D+01 1.3276
5 0.7013687736227565D+00 0.3772D-01 0.4163D+00 0.8248
6 0.7639596829006543D+00 0.2487D-01 0.1032D+01 1.1367
7 0.7221024250267078D+00 0.1698D-01 0.5022D+00 0.9169
8 0.7504177617637606D+00 0.1133D-01 0.8518D+00 1.0599
9 0.7314040424225099D+00 0.7681D-02 0.5703D+00 0.9615
10 0.7442373549005569D+00 0.5152D-02 0.7641D+00 1.0268
11 0.7356047404363474D+00 0.3480D-02 0.6155D+00 0.9823
12 0.7414250866101092D+00 0.2340D-02 0.7198D+00 1.0121
13 0.7375068905132428D+00 0.1578D-02 0.6424D+00 0.9920
14 0.7401473355678759D+00 0.1062D-02 0.6971D+00 1.0055
15 0.7383692041223232D+00 0.7159D-03 0.6573D+00 0.9963
16 0.7395672022122562D+00 0.4821D-03 0.6855D+00 1.0025
17 0.7387603198742113D+00 0.3248D-03 0.6653D+00 0.9983
18 0.7393038923969059D+00 0.2188D-03 0.6796D+00 1.0011
19 0.7389377567153445D+00 0.1474D-03 0.6694D+00 0.9992
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Newton’s method, applied to g(z) = & — cos(z), gives:

nu X err K P
0 0.1000000000000000D+01 0.2609D+00
1 0.7503638678402439D+00 0.1128D-01
2 0.7391128909113617D+00 0.2776D-04 0.1473D+00 1.9123
3 0.7390851333852841D+00 0.1701D-09 0.2163D+00 1.9980
4 0.7390851332151607D+00

Actually for this problem we do not know what the true z* is, and the tables above were computed
by first running Newton for 4 iterations (at which point it had converged to machine precision) and
then using this value z!4 as z*. For this reason we cannot compute the error in z!4 in the above table
for the Newton method. This shows that we can check the convergence rate even for problems where
we don’t know the exact solution.

Also note that even if we had not computed the errors, we could easily guess how accurate the
solutions are just from the tables of z values, by seeing how many digits remain unchanged in later
iterations. With Newton’s method the number of correct digits roughly doubles in each iteration, as
expected from quadratic convergence, while with the fixed point iteration it appears to take about 6 it-
erations to compute each additional digit. This is typical of linearly convergent methods — the number
of iterations to compute each additional digit is independent of the accuracy already achieved. Comput-
ing one additional digit requires reducing the error by a factor of 1/10, and doing so takes n iterations,
where K™ = 1/10. In the above example, K ~ 0.68 and so n ~ log(0.1)/1og(0.68) = 5.97. To converge
to 16 digits we would need roughly 16 times as many iterations, i.e., n = log(10715)/1og(0.68) = 95.5.

The number of iterations needed depends on how small K is. When we start looking at iterative
methods for linear systems we will see that most methods are only linearly convergent and that the
constant K approaches 1 as the matrix becomes more ill-conditioned. If K’ = 0.99 then it takes roughly
230 iterations for each digit, 3665 iterations for 16 digits.
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Appendix A4

Some Matrix Properties

If A is a matrix that approximates a differential operator then its transpose A? (with elements (47);; =
Aj;) approximates the adjoint operator and symmetric matrices (for which A = AT) correspond to self-
adjoint operators. These relations will be discussed in this chapter along with the notion of positive
definiteness for operators and matrices.

A4.1 Adjoints and symmetry
If u, v € R™ are two vectors, then the inner product of u and v is
m
(u,v) = ulv =vTu = Zuwi € R. (A4.1)
i=1

If A € R™™ then v'Au € R is a scalar that can be interpreted as (v, Au). Alternatively, since
vl'A = (ATv)T, we can write v1 Au = (ATv,u) and so we see that

(v, Au) = (ATv,u). (A4.2)

Now suppose u(z) and v(z) are two functions defined on 0 < z < 1 and define the inner product of
these functions in the usual way by

(u,v) =/0 u(z)v(x) de. (A4.3)

Note the relationship between this and (A4.1). Let L be a linear differential operator mapping functions
to functions. Then for any function u(x), Lu is another function of x and

1
(v, Lu) = / o(@)(Lu)(x) da.
0
The adjoint of L is the linear operator L* that satisfies
(v, Lu) = (L*v,u)

for all functions w in the domain of L and v in the domain of L*. Compare this to (A4.2). The domains
of functions where these operators are defined depend on the boundary conditions. For simplicity in the
discussion here we assume they are defined on the space of functions satisfying homogeneous Dirichlet
boundary conditions, u(0) = u(1) = 0. (For a more complete discussion of adjoints, see a text on
differential equations.)
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As an example, consider the linear differential operator L defined by
(Lu)(z) = as(z)u" (x) + a1 (2)u' (x) + ag(x)u(z). (A4.4)

Then we have
(v, Lu) = /0 [v(z)az(z)u" (z) + v(z)ay (z)u (z) + v(z)ao (z)u(z)] du.

To compute the adjoint operator, we must rewrite this as the integral of u(z) times some differential
operator applied to v. The basic tool is integration by parts, which yields

(v, Lu) = v()az ()’ (z)] —/0 (v()az(x)) v (x) dz
+v(z)ar (v)u(@)p —/0 (v(x)a (x)) u(x) do
—1—/0 v(z)ap(z)u(z) dz.

The boundary terms all drop out because u and v are assumed to both satisfy the homogeneous Dirichlet
boundary conditions. The first integral can be integrated by parts once again to move the remaining
derivative off of u and onto v. Again the boundary terms drop out and we obtain

(v, Lu) = /0 1 [(v(@)az(@))"u(z) — (v()ar (2)) u(z) + v(z)ao(v)u(z)] dz
which can be interpreted as (L*v,u) where L* is defined by
(L™)(2) = (v(z)az(2))" — (v(z)ar (2))" + v(z)ao(@).
This can be rewritten as
(L™)(2) = az(2)v" (z) + [2a3(2) — a1(2)]’ (@) + a3 (z) — ay(z) + ao(@)]v(w).

This defines the adjoint operator.

In general the adjoint operator is different from the original operator since there is no reason to
expect that 2a}(z) — a1(z) = ai(x), for example. However, for many important problems that arise
from physical principles, the adjoint operator is the same as the original operator, i.e., the equation is
self adjoint and L* = L. This is the analog of a symmetric matrix.

For example, consider the operator appearing in the steady-state heat equation with a varying heat
conductivity x(x):

Lu = (ku') = ku'" + &'u'. (A4.5)

In this case az(x) = k(x), a1(z) = £'(z), and ap(z) = 0, so we do have 2a, — a; = a1, for example. It
is much clearer to see why this equation is self adjoint if we go through the integration by parts again
explicitly:

(v, Lu) = /(nu')'v dx

- // ol dr (AL.6)
= [ u(kv') dz
= (Lv,u).

The symmetry of the first and second integrations by parts is apparent. Recall from Section 2.14 that
for this self-adjoint differential equation we can develop a discretization in terms of a symmetric matrix.
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A4.2 Positive definiteness

A symmetric matrix A € R™*™ is called positive definite if u” Au > 0 for all vectors u € IR™ other than
the zero vector. (A is positive semi-definite if u Au > 0 for all u # 0, negative definite if u” Au < 0
for all u # 0, and indefinite if the sign of u” Au can change for different u’s.) Note that A is negative
definite if and only if —A is positive definite.

A symmetric matrix always has real eigenvalues and orthogonal eigenspaces and so we can write

A = RART

where R is the matrix of right eigenvectors and A is a diagonal matrix of eigenvalues. Based on this it
is easy to show that A is:

positive definite if and only if all eigenvalues are positive,
positive semi-definite if and only if all eigenvalues are nonnegative,
negative definite if and only if all eigenvalues are negative,
negative semi-definite  if and only if all eigenvalues are nonpositive,
indefinite if there are eigenvalues of both signs.

The proofs follow directly from the observation that

m
u’ Au = u" RARTu = w" Aw = Z Naw?
i=1
where w = RTu.

In studying iterative methods for linear systems, we will see that some methods such as conjugate-
gradient methods depend on A being positive definite (or negative definite since we can always negate
the system). Why might we expect this property in matrices arising from physical problems?

As one example, again consider the self-adjoint operator (A4.5), and examine the second line of
(A4.6) in the case where v(z) = u(x):

(u, Lu) = —/H(CIZ)(U,(ZE))2 dz. (A4.7)

Since the conductivity x(z) is positive everywhere we see that (u, Lu) < 0 for any function u(z) that is
not identically zero. In other words, the differential operator L is negative definite.
The finite difference approximation (2.50) results in a matrix that is negative definite (Exercise 2.8).
This is easy to verify:
T

Ui —(K172 + K3/2)U1 + K3/2U2
RUTAU — Uz kg/2UL — (K32 + K5/2)Us + k52U
Un Em—1/2Um—1 = (Em—1/2 + Km+1/2)Unm

= —(Kiy2 + K3/2)Ut + 263)2U1Us — (K32 + ki52)U3
+ 265 /5UsUs — - + 261 /2Umn—1 U — (Km—1/2 + /‘Gm+1/2)U§1-
Rearranging this gives

WUTAU = —kyoU} — k3/2(Us — Uy )?

—k5o(Us = U2)> = ... = k12U — Unm-1)” = kg1 2Un. (44.8)
Since each k is positive and these are multiplied by squares which are nonnegative, we see that
UTAU < 0.
Moreover this can be equal to zero only if Uy = Us = --- = U, =0, i.e., only if U = 6, and so A is

negative definite. Note that the sum in (A4.8), when divided by h, is a discrete approximation of the
integral appearing in (A4.7).
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A4.3 The maximum principle

The equation (ku')’ = 0 with x(x) > 0 and Dirichlet boundary conditions u(0) = «, u(1l) = 8 can be
shown to satisfy a maximum principle: u can attain a maximum or minimum only on the boundary of
the interval (unless it is constant throughout). In particular, u lies between a and 8 everywhere on the
interval.

The discrete solution to the system with matrix (2.50) can be easily shown to satisfy the same
property. If we let Up = « and Up,+1 = (3, then the i’th equation of the system AU = 0 with the matrix
(2.50) can be rewritten as

K K
U = <—1/2) Ui+ <+—1/2) Ui
Ki—1/2 + Kit1/2 Ki—1/2 + Kit1/2
foralli =1, 2, ..., m. Since ¥ > 0 everywhere and

< Ki—1/2 ) n ( Kit1/2 > 1
Ki—1/2 T Kit1/2 Ki—1/2 t Kit1/2 ’

we see that Uj; is just a convex combination of the two neighboring values, and hence must lie between
the two values. This observation can be easily turned into a proof.

A4.4 Diagonal dominance

A matrix is said to be (strictly) diagonally dominant if the magnitude of the diagonal element in each
row is larger than the sum of the magnitudes of all the off-diagonal elements of the same row,

laii] > Y ail.

J#i

A is weakly diagonally dominant if the above holds with > instead of > and there is equality for some
TOW.

The beautiful Gerschgorin Circle Theorem states that the eigenvalues of a matrix all lie in the union
B = U;B; of balls B; in the complex plane defined by

Bi=4q2z€C:|z—ayu| < Zlazﬂ
j#i

It follows that if a real matrix is strictly diagonally dominant and its diagonal elements are all positive,
then the matrix must be positive definite. If it is only weakly diagonally dominant, and has positive
diagonal elements, then it is at least positive semidefinite. It is in fact positive definite if we can show
by other means that it is also nonsingular (ruling out 0 as a possible eigenvalue).

This technique can be used to give another proof that the matrix (2.50) is positive definite. It is
clearly weakly diagonally dominant, and to see that it is nonsingular we use the maximum principle: If
Au = 0 then we are solving the Dirichlet problem with « = 8 = 0 and the solution, by the maximum
principle, must be u = 0. Since this is the only solution to Au = 0, the matrix must be nonsingular.

Diagonal dominance is also important computationallly. For example, it can be shown that we can
solve a linear system with a diagonally dominant matrix without pivoting and the algorithm will be
stable. This can be very important for sparse matrices where we want to preserve the structure and
avoid introducing any more nonzeros than necessary.
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A4.5 Quadratic forms

The fact that certain iterative methods depend on the matrix being symmetric positive definite comes
from the fact that in this case we can reformulate the problem of solving the linear system Au = F as
a minimization problem. These iterative methods are based on optimization techniques.
Cousider the function .
g(u) = §uTAu —2u"F.

This function maps vectors u € IR™ to real numbers and is quadratic in the elements of the vector u.
It is called a quadratic form. Let’s look at this function for two different 2 x 2 matrices to illustrate its
behavior:

1 0

A = [ 0 1 } 5 g1(u) = uf +u3 — 2(ur Fy + uzFh),
1 0 9 9

Ay = 0 —1|° ga(u) = uy —uy — 2(ur F1 + ua Fh).

The matrix A; is positive definite and the graph of g;(u) is a bowl opening upwards. The function
g1(u) has a unique global minimum. The matrix A, is indefinite and the graph of go(u) has a saddle
point but no global minimum or maximum. As we move off towards oo in different directions in the
u1-u2 plane, go(u) may go towards either +00 or —oo depending on the direction. This is typical of
indefinite matrices.

More generally, for any positive-definite matrix A € R™*™ the term u? Au in g(u) is always positive
and must go to +00 as u increases in magnitude in any direction in R™. Moreover this quadratic growth
overwhelms whatever the linear term u” F' is doing, and so the function g(u) must go to +oo in every
direction and therefore must have a global minimum at some point. Hence for positive definite matrices
it makes sense to solve a minimization problem. Why would we want to? Because simple calculus
tells us that the minimum of g(u) must occur at the point where the gradient vector Vg(u) is zero.
Differentiating g(u) with respect to each component u; shows that (provided A is symmetric)

Vg(u) = Au— F

This is the zero vector precisely at the point u that solves the original linear system Au = F. So if we
can minimize g(u), we have solved the system.
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